These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 8234490
1. The tet(K) gene of plasmid pT181 of Staphylococcus aureus encodes an efflux protein that contains 14 transmembrane helices. Guay GG, Khan SA, Rothstein DM. Plasmid; 1993 Sep; 30(2):163-6. PubMed ID: 8234490 [Abstract] [Full Text] [Related]
2. Functions of tetracycline efflux proteins that do not involve tetracycline. Krulwich TA, Jin J, Guffanti AA, Bechhofer H. J Mol Microbiol Biotechnol; 2001 Apr; 3(2):237-46. PubMed ID: 11321579 [Abstract] [Full Text] [Related]
3. TetZ, a new tetracycline resistance determinant discovered in gram-positive bacteria, shows high homology to gram-negative regulated efflux systems. Tauch A, Pühler A, Kalinowski J, Thierbach G. Plasmid; 2000 Nov; 44(3):285-91. PubMed ID: 11078655 [Abstract] [Full Text] [Related]
4. The tetracycline resistance gene tet(M) exhibits mosaic structure. Oggioni MR, Dowson CG, Smith JM, Provvedi R, Pozzi G. Plasmid; 1996 May; 35(3):156-63. PubMed ID: 8812782 [Abstract] [Full Text] [Related]
5. The tetracycline efflux protein encoded by the tet(K) gene from Staphylococcus aureus is a metal-tetracycline/H+ antiporter. Yamaguchi A, Shiina Y, Fujihira E, Sawai T, Noguchi N, Sasatsu M. FEBS Lett; 1995 May 29; 365(2-3):193-7. PubMed ID: 7781778 [Abstract] [Full Text] [Related]
6. Characterization of the tetracycline resistance gene of plasmid pT181 of Staphylococcus aureus. Mojumdar M, Khan SA. J Bacteriol; 1988 Dec 29; 170(12):5522-8. PubMed ID: 3142848 [Abstract] [Full Text] [Related]
7. The tet(K) gene from Staphylococcus aureus mediates the transport of potassium in Escherichia coli. Guay GG, Tuckman M, McNicholas P, Rothstein DM. J Bacteriol; 1993 Aug 29; 175(15):4927-9. PubMed ID: 8335648 [Abstract] [Full Text] [Related]
8. Transmembrane glutamic acid residues play essential roles in the metal-tetracycline/H+ antiporter of Staphylococcus aureus. Fujihira E, Kimura T, Shiina Y, Yamaguchi A. FEBS Lett; 1996 Aug 12; 391(3):243-6. PubMed ID: 8764982 [Abstract] [Full Text] [Related]
9. Glycine-rich transmembrane helix 10 in the staphylococcal tetracycline transporter TetA(K) lines a solvent-accessible channel. Hassan KA, Robinson KL, Smith AN, Gibson JH, Skurray RA, Brown MH. Biochemistry; 2006 Dec 26; 45(51):15661-9. PubMed ID: 17176088 [Abstract] [Full Text] [Related]
10. Diversity of the tetracycline resistance gene tet(M) and identification of Tn916- and Tn5801-like (Tn6014) transposons in Staphylococcus aureus from humans and animals. de Vries LE, Christensen H, Skov RL, Aarestrup FM, Agersø Y. J Antimicrob Chemother; 2009 Sep 26; 64(3):490-500. PubMed ID: 19531603 [Abstract] [Full Text] [Related]
11. Membrane topology of the staphylococcal tetracycline efflux protein Tet(K) determined by antibacterial resistance gene fusion. Hirata T, Fujihira E, Kimura-Someya T, Yamaguchi A. J Biochem; 1998 Dec 01; 124(6):1206-11. PubMed ID: 9832626 [Abstract] [Full Text] [Related]
12. The PecM protein of the phytopathogenic bacterium Erwinia chrysanthemi, membrane topology and possible involvement in the efflux of the blue pigment indigoidine. Rouanet C, Nasser W. J Mol Microbiol Biotechnol; 2001 Apr 01; 3(2):309-18. PubMed ID: 11321588 [Abstract] [Full Text] [Related]
13. Staphylococcal tetracycline-MLSB resistance plasmid pSTE2 is the product of an RSA-mediated in vivo recombination. Hauschild T, Lüthje P, Schwarz S. J Antimicrob Chemother; 2005 Aug 01; 56(2):399-402. PubMed ID: 15980097 [Abstract] [Full Text] [Related]
14. Identification of a novel tetracycline resistance gene, tet(63), located on a multiresistance plasmid from Staphylococcus aureus. Zhu Y, Wang C, Schwarz S, Liu W, Yang Q, Luan T, Wang L, Liu S, Zhang W. J Antimicrob Chemother; 2021 Feb 11; 76(3):576-581. PubMed ID: 33247717 [Abstract] [Full Text] [Related]
15. Presence of the Tet M determinant in a clinical isolate of Acinetobacter baumannii. Ribera A, Ruiz J, Vila J. Antimicrob Agents Chemother; 2003 Jul 11; 47(7):2310-2. PubMed ID: 12821485 [Abstract] [Full Text] [Related]
16. Distribution and molecular analysis of mef(A)-containing elements in tetracycline-susceptible and -resistant Streptococcus pyogenes clinical isolates with efflux-mediated erythromycin resistance. Brenciani A, Ojo KK, Monachetti A, Menzo S, Roberts MC, Varaldo PE, Giovanetti E. J Antimicrob Chemother; 2004 Dec 11; 54(6):991-8. PubMed ID: 15563518 [Abstract] [Full Text] [Related]
17. tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. Kehrenberg C, Catry B, Haesebrouck F, de Kruif A, Schwarz S. J Antimicrob Chemother; 2005 Aug 11; 56(2):403-6. PubMed ID: 15972309 [Abstract] [Full Text] [Related]
18. Distribution of tetracycline resistance genes in genotypically related and unrelated multiresistant Acinetobacter baumannii strains from different European hospitals. Huys G, Cnockaert M, Vaneechoutte M, Woodford N, Nemec A, Dijkshoorn L, Swings J. Res Microbiol; 2005 Apr 11; 156(3):348-55. PubMed ID: 15808938 [Abstract] [Full Text] [Related]
19. Investigations into the basis of chloramphenicol and tetracycline resistance in Staphylococcus intermedius isolates from cases of pyoderma in dogs. Kim TJ, Na YR, Lee JI. J Vet Med B Infect Dis Vet Public Health; 2005 Apr 11; 52(3):119-24. PubMed ID: 15876223 [Abstract] [Full Text] [Related]