These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


101 related items for PubMed ID: 8235069

  • 1. Metabolism of allylnitrile to cyanide: in vitro studies.
    Farooqui MY, Ybarra B, Piper J.
    Res Commun Chem Pathol Pharmacol; 1993 Sep; 81(3):355-68. PubMed ID: 8235069
    [Abstract] [Full Text] [Related]

  • 2. Metabolism of acrylonitrile to cyanide. In vitro studies.
    Abreu ME, Ahmed AE.
    Drug Metab Dispos; 1980 Sep; 8(6):376-9. PubMed ID: 6109603
    [Abstract] [Full Text] [Related]

  • 3. Metabolism of methacrylonitrile to cyanide: in vitro studies.
    Farooqui MY, Diaz RG, Cavazos R.
    J Biochem Toxicol; 1990 Sep; 5(2):109-14. PubMed ID: 2283659
    [Abstract] [Full Text] [Related]

  • 4. Intestinal toxicity of acrylonitrile: in vitro metabolism by intestinal cytochrome P450 2E1.
    Subramanian U, Ahmed AE.
    Toxicol Appl Pharmacol; 1995 Nov; 135(1):1-8. PubMed ID: 7482528
    [Abstract] [Full Text] [Related]

  • 5. Renal metabolism of acrylonitrile to cyanide: in vitro studies.
    Mostafa AM, Abdel-Naim AB, Abo-Salem O, Abdel-Aziz AH, Hamada FM.
    Pharmacol Res; 1999 Aug; 40(2):195-200. PubMed ID: 10433881
    [Abstract] [Full Text] [Related]

  • 6. In-vitro testicular bioactivation of acrylonitrile.
    Abdel-Aziz AH, Abdel-Naim AB, Hamada FM, Ahmed AE.
    Pharmacol Res; 1997 Feb; 35(2):129-34. PubMed ID: 9175582
    [Abstract] [Full Text] [Related]

  • 7. Metabolism of haloforms to carbon monoxide. I. In vitro studies.
    Ahmed AE, Kubic VL, Anders MW.
    Drug Metab Dispos; 1977 Feb; 5(2):198-204. PubMed ID: 15814
    [Abstract] [Full Text] [Related]

  • 8. Monooxygenase-mediated activation of chlorotrianisene (TACE) in covalent binding to rat hepatic microsomal proteins.
    Juedes MJ, Bulger WH, Kupfer D.
    Drug Metab Dispos; 1987 Feb; 15(6):786-93. PubMed ID: 2893703
    [Abstract] [Full Text] [Related]

  • 9. Metabolism of dihalomethanes to carbon monoxide. II. In vitro studies.
    Kubic VL, Anders MW.
    Drug Metab Dispos; 1975 Feb; 3(2):104-12. PubMed ID: 236156
    [Abstract] [Full Text] [Related]

  • 10. Comparative metabolism of methacrylonitrile and acrylonitrile to cyanide using cytochrome P4502E1 and microsomal epoxide hydrolase-null mice.
    El Hadri L, Chanas B, Ghanayem BI.
    Toxicol Appl Pharmacol; 2005 Jun 01; 205(2):116-25. PubMed ID: 15893539
    [Abstract] [Full Text] [Related]

  • 11. Phenytoin metabolic activation: role of cytochrome P-450, glutathione, age, and sex in rats and mice.
    Roy D, Snodgrass WR.
    Res Commun Chem Pathol Pharmacol; 1988 Feb 01; 59(2):173-90. PubMed ID: 3358010
    [Abstract] [Full Text] [Related]

  • 12. Fate of isopropyl-iodoamphetamine (IMP) in rat liver microsomes.
    Joulin Y, Moretti JL, Hoellinger H, Defer G.
    Nucl Med Commun; 1992 Feb 01; 13(2):99-105. PubMed ID: 1436904
    [Abstract] [Full Text] [Related]

  • 13. Metabolism of paraldehyde to acetaldehyde by rat liver microsomes.
    Zera RT, Nagasawa HT.
    Res Commun Chem Pathol Pharmacol; 1981 Dec 01; 34(3):531-41. PubMed ID: 7323448
    [Abstract] [Full Text] [Related]

  • 14. Acrylonitrile: in vivo metabolism in rats and mice.
    Ahmed AE, Patel K.
    Drug Metab Dispos; 1981 Dec 01; 9(3):219-22. PubMed ID: 6113929
    [Abstract] [Full Text] [Related]

  • 15. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment.
    Hissink AM, Oudshoorn MJ, Van Ommen B, Haenen GR, Van Bladeren PJ.
    Chem Res Toxicol; 1996 Dec 01; 9(8):1249-56. PubMed ID: 8951226
    [Abstract] [Full Text] [Related]

  • 16. Characterization of deltamethrin metabolism by rat plasma and liver microsomes.
    Anand SS, Bruckner JV, Haines WT, Muralidhara S, Fisher JW, Padilla S.
    Toxicol Appl Pharmacol; 2006 Apr 15; 212(2):156-66. PubMed ID: 16169030
    [Abstract] [Full Text] [Related]

  • 17. In vitro studies on the metabolic activation of the furanopyridine L-754,394, a highly potent and selective mechanism-based inhibitor of cytochrome P450 3A4.
    Sahali-Sahly Y, Balani SK, Lin JH, Baillie TA.
    Chem Res Toxicol; 1996 Sep 15; 9(6):1007-12. PubMed ID: 8870989
    [Abstract] [Full Text] [Related]

  • 18. Lactoperoxidase catalyzes in vitro activation of acrylonitrile to cyanide.
    Nasralla SN, Ghoneim AI, Khalifa AE, Gad MZ, Abdel-Naim AB.
    Toxicol Lett; 2009 Dec 15; 191(2-3):347-52. PubMed ID: 19825401
    [Abstract] [Full Text] [Related]

  • 19. Metabolism of the polynuclear sulfur heterocycle benzo[b]phenanthro[2,3-d]thiophene by rodent liver microsomes: evidence for multiple pathways in the bioactivation of benzo[b]phenanthro[2,3-d]thiophene.
    Yuan ZX, Sikka HC, Munir S, Kumar A, Muruganandam AV, Kumar S.
    Chem Res Toxicol; 2003 Dec 15; 16(12):1581-8. PubMed ID: 14680372
    [Abstract] [Full Text] [Related]

  • 20. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides.
    Jousserandot A, Boucher JL, Henry Y, Niklaus B, Clement B, Mansuy D.
    Biochemistry; 1998 Dec 08; 37(49):17179-91. PubMed ID: 9860831
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.