These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
86 related items for PubMed ID: 8251575
1. Macrophage activation: a riddle of immunological resistance. Crawford RM, Leiby DA, Green SJ, Nacy CA, Fortier AH, Meltzer MS. Immunol Ser; 1994; 60():29-46. PubMed ID: 8251575 [Abstract] [Full Text] [Related]
2. [Frontier of mycobacterium research--host vs. mycobacterium]. Okada M, Shirakawa T. Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793 [Abstract] [Full Text] [Related]
4. [Bactericidal activity of cells of the immune system]. Wargnier A, Lagrange PH. Pathol Biol (Paris); 1993 Nov; 41(9):887-96. PubMed ID: 8121721 [Abstract] [Full Text] [Related]
5. Ity influences the production of IFN-gamma by murine splenocytes stimulated in vitro with Salmonella typhimurium. Ramarathinam L, Niesel DW, Klimpel GR. J Immunol; 1993 May 01; 150(9):3965-72. PubMed ID: 8473743 [Abstract] [Full Text] [Related]
6. The role of Toll-like receptors 2 and 4 on reactive oxygen species and nitric oxide production by macrophage cells stimulated with root canal pathogens. Marcato LG, Ferlini AP, Bonfim RC, Ramos-Jorge ML, Ropert C, Afonso LF, Vieira LQ, Sobrinho AP. Oral Microbiol Immunol; 2008 Oct 01; 23(5):353-9. PubMed ID: 18793356 [Abstract] [Full Text] [Related]
7. IFN-gamma-dependent nitric oxide production is not linked to resistance in experimental African trypanosomiasis. Hertz CJ, Mansfield JM. Cell Immunol; 1999 Feb 25; 192(1):24-32. PubMed ID: 10066343 [Abstract] [Full Text] [Related]
8. Macrophages and Brucella. Baldwin CL, Winter AJ. Immunol Ser; 1994 Feb 25; 60():363-80. PubMed ID: 8251581 [Abstract] [Full Text] [Related]
9. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide prevent inducible nitric oxide synthase transcription in macrophages by inhibiting NF-kappa B and IFN regulatory factor 1 activation. Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D. J Immunol; 1999 Apr 15; 162(8):4685-96. PubMed ID: 10202009 [Abstract] [Full Text] [Related]
10. Regulator and effector functions of T-cell subsets in human Leishmania infections. Kemp M. APMIS Suppl; 1997 Apr 15; 68():1-33. PubMed ID: 9063493 [Abstract] [Full Text] [Related]
11. Intracellular parasite kill: flow cytometry and NO detection for rapid discrimination between anti-leishmanial activity and macrophage activation. Kram D, Thäle C, Kolodziej H, Kiderlen AF. J Immunol Methods; 2008 Apr 20; 333(1-2):79-88. PubMed ID: 18313691 [Abstract] [Full Text] [Related]
12. Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells. Kolodziej H, Kiderlen AF. Phytochemistry; 2005 Sep 20; 66(17):2056-71. PubMed ID: 16153409 [Abstract] [Full Text] [Related]
13. Toxoplasma gondii infection induces apoptosis in noninfected macrophages: role of nitric oxide and other soluble factors. Nishikawa Y, Kawase O, Vielemeyer O, Suzuki H, Joiner KA, Xuan X, Nagasawa H. Parasite Immunol; 2007 Jul 20; 29(7):375-85. PubMed ID: 17576367 [Abstract] [Full Text] [Related]
14. Targeting of immunostimulatory DNA cures experimental visceral leishmaniasis through nitric oxide up-regulation and T cell activation. Datta N, Mukherjee S, Das L, Das PK. Eur J Immunol; 2003 Jun 20; 33(6):1508-18. PubMed ID: 12778468 [Abstract] [Full Text] [Related]
15. Testing human biologicals in animal host resistance models. Burleson GR, Burleson FG. J Immunotoxicol; 2008 Jan 20; 5(1):23-31. PubMed ID: 18382855 [Abstract] [Full Text] [Related]
16. The selective inhibition of nitric oxide production in the avian macrophage cell line HD11. Crippen TL. Vet Immunol Immunopathol; 2006 Jan 15; 109(1-2):127-37. PubMed ID: 16214221 [Abstract] [Full Text] [Related]
17. Interferon-gamma: biologic functions and HCV therapy (type I/II) (1 of 2 parts). Gattoni A, Parlato A, Vangieri B, Bresciani M, Derna R. Clin Ter; 2006 Jan 15; 157(4):377-86. PubMed ID: 17051976 [Abstract] [Full Text] [Related]
18. Heat shock protein 65 induced by gammadelta T cells prevents apoptosis of macrophages and contributes to host defense in mice infected with Toxoplasma gondii. Hisaeda H, Sakai T, Ishikawa H, Maekawa Y, Yasutomo K, Good RA, Himeno K. J Immunol; 1997 Sep 01; 159(5):2375-81. PubMed ID: 9278328 [Abstract] [Full Text] [Related]
19. Defects in cell-mediated immunity affect chronic, but not innate, resistance of mice to Mycobacterium avium infection. Doherty TM, Sher A. J Immunol; 1997 May 15; 158(10):4822-31. PubMed ID: 9144497 [Abstract] [Full Text] [Related]
20. Cutting edge: bacterial DNA and LPS act in synergy in inducing nitric oxide production in RAW 264.7 macrophages. Gao JJ, Zuvanich EG, Xue Q, Horn DL, Silverstein R, Morrison DC. J Immunol; 1999 Oct 15; 163(8):4095-9. PubMed ID: 10510342 [Abstract] [Full Text] [Related] Page: [Next] [New Search]