These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
206 related items for PubMed ID: 8252103
21. Altered active sodium and calcium transport by heart sarcolemmal membranes from young spontaneously hypertensive rats: modulation by calmodulin. Cirillo M, David-Dufilho M, Devynck MA. J Hypertens Suppl; 1984 Dec; 2(3):S485-7. PubMed ID: 6100750 [Abstract] [Full Text] [Related]
22. Differences in renal tubular Na-K-adenosine triphosphatase in spontaneously hypertensive and normotensive rats. Garg LC, Narang N. J Cardiovasc Pharmacol; 1986 Dec; 8(1):186-9. PubMed ID: 2419683 [Abstract] [Full Text] [Related]
23. [Effects of ANP upon ion pump activity and gene expression in aortic smooth muscle cells from spontaneously hypertensive rats]. Zhang GH, Shang QH, Jiang QF, Wu ZB, Liu ZL, Wan WH. Zhonghua Yi Xue Za Zhi; 2009 Nov 03; 89(40):2862-6. PubMed ID: 20137670 [Abstract] [Full Text] [Related]
24. Increased heart microsomal Na(+) K(+)-transporting ATPase activity by tetrandrine in spontaneously hypertensive rats. Chen NH, Wang YL, Ding JH. Zhongguo Yao Li Xue Bao; 1993 Jul 03; 14(4):320-5. PubMed ID: 8249625 [Abstract] [Full Text] [Related]
25. Gender difference in functional properties of Na,K-ATPase in the heart of spontaneously hypertensive rats. Vlkovicová J, Javorková V, Pechánová O, Vrbjar N. Life Sci; 2005 Jan 14; 76(9):971-82. PubMed ID: 15607327 [Abstract] [Full Text] [Related]
26. Adrenergic regulation of (Na+, K+)-ATPase activity in proximal tubules of spontaneously hypertensive rats. Beach RE, DuBose TD. Kidney Int; 1990 Sep 14; 38(3):402-8. PubMed ID: 2172614 [Abstract] [Full Text] [Related]
27. Decreased monosaccharide transport in renal brush-border membrane vesicles of spontaneously hypertensive rats. Mate A, de la Hermosa MA, Barfull A, Sánchez-Aguayo I, Planas JM, Vázquez CM. Cell Mol Life Sci; 2000 Jan 20; 57(1):165-74. PubMed ID: 10949588 [Abstract] [Full Text] [Related]
28. Effect of chronic ethanol consumption on postnatal development of renal (Na + K)-ATPase in the rat. Rodrigo R, Vergara L, Oberhauser E. Cell Biochem Funct; 1991 Jul 20; 9(3):215-22. PubMed ID: 1661209 [Abstract] [Full Text] [Related]
29. Dopaminergic modulation of Na,K-ATPase activity in the proximal tubules of normotensive and hypertensive rats. Lokhandwala MF, Kansra V, Chen C. Hypertens Res; 1995 Jun 20; 18 Suppl 1():S43-6. PubMed ID: 8529073 [Abstract] [Full Text] [Related]
30. Effect of quercetin on kinetic properties of renal Na,K-ATPase in normotensive and hypertensive rats. Mezesova L, Bartekova M, Javorkova V, Vlkovicova J, Breier A, Vrbjar N. J Physiol Pharmacol; 2010 Oct 20; 61(5):593-8. PubMed ID: 21081803 [Abstract] [Full Text] [Related]
31. The role of sodium-potassium adenosine triphosphatase in the regulation of membrane fluidity of erythrocytes in spontaneously hypertensive rats: an electron paramagnetic resonance investigation. Tsuda K, Nishio I, Masuyama Y. Am J Hypertens; 1997 Dec 20; 10(12 Pt 1):1411-4. PubMed ID: 9443778 [Abstract] [Full Text] [Related]
32. Cell membrane microviscosity and Ca(2+)-Mg(2+)-ATPase activity do not contribute to hypertension in the spontaneously hypertensive rat model. Norman RI, Achall N. Clin Sci (Lond); 1993 Nov 20; 85(5):585-91. PubMed ID: 8287647 [Abstract] [Full Text] [Related]
33. Activity and regulation of Na+-HCO3- cotransporter in immortalized spontaneously hypertensive rat and Wistar-Kyoto rat proximal tubular epithelial cells. Pedrosa R, Gonçalves N, Hopfer U, Jose PA, Soares-da-Silva P. Hypertension; 2007 May 20; 49(5):1186-93. PubMed ID: 17325238 [Abstract] [Full Text] [Related]
34. Erythrocyte sodium ion transport system in DOC-salt, Goldblatt, and spontaneously hypertensive rats. Yokomatsu M, Fujito K, Numahata H, Koide H. Scand J Clin Lab Invest; 1992 Oct 20; 52(6):497-506. PubMed ID: 1329186 [Abstract] [Full Text] [Related]
35. Erythrocyte membrane abnormalities in hypertension: a comparison between two animal models. Chan TC, Godin DV, Sutter MC. Clin Exp Hypertens A; 1983 Oct 20; 5(5):691-719. PubMed ID: 6136351 [Abstract] [Full Text] [Related]
36. Defective nitric oxide production impairs angiotensin II-induced Na-K-ATPase regulation in spontaneously hypertensive rats. Javkhedkar AA, Lokhandwala MF, Banday AA. Am J Physiol Renal Physiol; 2012 Jan 01; 302(1):F47-51. PubMed ID: 21900450 [Abstract] [Full Text] [Related]
37. Transport ATPases in the erythrocytes of rats acclimatized to intermittent altitude hypoxia. Kazennov AM, Procházka J, Pelouch V, Ostádal B, Maslova NM. Physiol Bohemoslov; 1986 Jan 01; 35(5):406-13. PubMed ID: 3025901 [Abstract] [Full Text] [Related]
38. PST 2238: A new antihypertensive compound that modulates Na,K-ATPase in genetic hypertension. Ferrari P, Ferrandi M, Tripodi G, Torielli L, Padoani G, Minotti E, Melloni P, Bianchi G. J Pharmacol Exp Ther; 1999 Mar 01; 288(3):1074-83. PubMed ID: 10027844 [Abstract] [Full Text] [Related]
39. [Effect of the Na+, K(+)-ATPase modulation in neurons of the medulla oblongata on hemodynamic effects in spontaneously hypertensive rats]. Shapoval LM, Dmytrenko OV, Vavilova HL, Pobigaĭlo LS, Stepanenko LH, Radchenko NV, Davydovs'ka TL, Sagach VF. Fiziol Zh (1994); 2012 Mar 01; 58(5):3-13. PubMed ID: 23233941 [Abstract] [Full Text] [Related]