These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
206 related items for PubMed ID: 8252103
41. Decreased Na+K+ATPase activity in the aortic endothelium and smooth muscle of the spontaneously hypertensive rats. Manjeet S, Sim MK. Clin Exp Hypertens A; 1987; 9(4):797-812. PubMed ID: 3040303 [Abstract] [Full Text] [Related]
42. Augmented Na,K-ATPase gene expression in spontaneously hypertensive rat hearts. Tsuruya Y, Ikeda U, Kawakami K, Nagano K, Kamitani T, Oguchi A, Ebata H, Shimada K, Medford RM. Clin Exp Hypertens A; 1991; 13(6-7):1213-22. PubMed ID: 1662123 [Abstract] [Full Text] [Related]
43. Effect of serum on cell membrane Na-K transport of vascular smooth muscle in culture--a comparative study between normotensive and hypertensive rats. Kuriyama S, Kaguchi Y, Nakamura K, Hashimoto T, Sakai O. Pharmacol Res; 1992; 25(2):155-65. PubMed ID: 1321976 [Abstract] [Full Text] [Related]
44. Na(+)-K+ pump and Na(+)-K+ co-transport in cultured vascular smooth muscle cells from spontaneously hypertensive and normotensive rats: baseline activity and regulation. Orlov SN, Resink TJ, Bernhardt J, Bühler FR. J Hypertens; 1992 Aug; 10(8):733-40. PubMed ID: 1325504 [Abstract] [Full Text] [Related]
45. Calcium ATPase in erythrocytes of spontaneously hypertensive rats of the Milan strain. Vezzoli G, Elli AA, Tripodi G, Bianchi G, Carafoli E. J Hypertens; 1985 Dec; 3(6):645-8. PubMed ID: 2935571 [Abstract] [Full Text] [Related]
46. Nitric oxide synthase activity in renal cortex and medulla of normotensive and spontaneously hypertensive rats. Nava E, Llinás MT, Gonzalez JD, Salazar FJ. Am J Hypertens; 1996 Dec; 9(12 Pt 1):1236-9. PubMed ID: 8972897 [Abstract] [Full Text] [Related]
47. ATP-dependent Ca2+ transport and Na+/Ca2+ exchange system in renal basolateral plasmamembranes of spontaneously hypertensive rats. Bindels RJ, Geertsen JA, van Os CH. Clin Exp Hypertens A; 1996 Dec; 7(12):1719-31. PubMed ID: 2940035 [Abstract] [Full Text] [Related]
48. Effect of temperature on the erythrocyte membrane Ca2(+)-ATPase activity in hypertension. Adeoya SA, Norman RI, Bing RF. Biochem Soc Trans; 1990 Aug; 18(4):613-4. PubMed ID: 2148919 [No Abstract] [Full Text] [Related]
49. Vascular relaxation probably mediates the antihypertensive effect of a high-potassium diet: a role for enhanced vascular Na,K-ATPase activity. Dolson GM, Wesson DE, Adrogué HJ. J Hypertens; 1995 Dec; 13(12 Pt 1):1433-9. PubMed ID: 8866905 [Abstract] [Full Text] [Related]
50. [Activity of transporting ATPase and functional properties of blood cells in patients with hypertension]. Gurevich VS, Moiseeva OM, Mikhaĭlova IA, Roĭ AIu. Vopr Med Khim; 1993 Dec; 39(1):32-4. PubMed ID: 8388596 [Abstract] [Full Text] [Related]
51. Renal Na+, K+-ATPase in SHR: studies of activity and gene expression. Nguyen AT, Hayward-Lester A, Sabatini S, Doris PA. Clin Exp Hypertens; 1998 Dec; 20(5-6):641-56. PubMed ID: 9682920 [Abstract] [Full Text] [Related]
52. Sexual dimorphism of 11beta-hydroxysteroid dehydrogenase in hypertensive and normotensive rats. Mazancová K, Miksík I, Kunes J, Zicha J, Pácha J. Hypertens Res; 2003 Apr; 26(4):333-8. PubMed ID: 12733702 [Abstract] [Full Text] [Related]
53. ANG-(3-4) inhibits renal Na+-ATPase in hypertensive rats through a mechanism that involves dissociation of ANG II receptors, heterodimers, and PKA. Dias J, Ferrão FM, Axelband F, Carmona AK, Lara LS, Vieyra A. Am J Physiol Renal Physiol; 2014 Apr 15; 306(8):F855-63. PubMed ID: 24523384 [Abstract] [Full Text] [Related]
54. [Changes of physiological and biochemical characteristics of rat erythrocytes after blood loss]. Maslova MN, Kazennov AM, Katiukhin LN, Novozhilov AV, Skverchinskaia EA, Tavrovskaia TV. Zh Evol Biokhim Fiziol; 2007 Apr 15; 43(5):414-8. PubMed ID: 18038638 [Abstract] [Full Text] [Related]
55. Cellular distribution of the renal bumetanide-sensitive Na-K-2Cl cotransporter BSC-1 in the inner stripe of the outer medulla during the development of hypertension in the spontaneously hypertensive rat. Sonalker PA, Tofovic SP, Jackson EK. Clin Exp Pharmacol Physiol; 2007 Dec 15; 34(12):1307-12. PubMed ID: 17973873 [Abstract] [Full Text] [Related]
56. [Various properties of the Na+, K(+)-ATPase and the Mg (2+)-ATPase in erythrocytes from normotensive and hypertensive subjects]. Canestrari F, Galli F, Gheller G, De Crescentini S, Biagiarelli B. Boll Soc Ital Biol Sper; 1991 Jul 15; 67(7):659-66. PubMed ID: 1667978 [Abstract] [Full Text] [Related]
57. Different calcium storage pools in vascular smooth muscle cells from spontaneously hypertensive and normotensive Wistar-Kyoto rats. Neusser M, Tepel M, Golinski P, Holthues J, Spieker C, Zhu Z, Zidek W. J Hypertens; 1994 May 15; 12(5):533-8. PubMed ID: 7930553 [Abstract] [Full Text] [Related]
59. Overexpression of HGF transgene attenuates renal inflammatory mediators, Na(+)-ATPase activity and hypertension in spontaneously hypertensive rats. Romero-Vásquez F, Chávez M, Pérez M, Arcaya JL, García AJ, Rincón J, Rodríguez-Iturbe B. Biochim Biophys Acta; 2012 Oct 15; 1822(10):1590-9. PubMed ID: 22713485 [Abstract] [Full Text] [Related]
60. Development of renal hypertrophy and increased renal Na,K-ATPase in streptozotocin-diabetic rats. Ku DD, Sellers BM, Meezan E. Endocrinology; 1986 Aug 15; 119(2):672-9. PubMed ID: 3015553 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]