These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 8258514

  • 1. Quantal and visual efficiency of fluorescence in the lens of the human eye.
    van den Berg TJ.
    Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3566-73. PubMed ID: 8258514
    [Abstract] [Full Text] [Related]

  • 2. Depth-dependent forward light scattering by donor lenses.
    van den Berg TJ.
    Invest Ophthalmol Vis Sci; 1996 May; 37(6):1157-66. PubMed ID: 8631630
    [Abstract] [Full Text] [Related]

  • 3. Light scattering by donor lenses as a function of depth and wavelength.
    van den Berg TJ.
    Invest Ophthalmol Vis Sci; 1997 Jun; 38(7):1321-32. PubMed ID: 9191595
    [Abstract] [Full Text] [Related]

  • 4. In situ measurements of lens fluorescence and its interference with visual function.
    Zuclich JA, Glickman RD, Menendez AR.
    Invest Ophthalmol Vis Sci; 1992 Feb; 33(2):410-5. PubMed ID: 1740373
    [Abstract] [Full Text] [Related]

  • 5. Development and repair of cataract induced by ultraviolet radiation.
    Michael R.
    Ophthalmic Res; 2000 Feb; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [Abstract] [Full Text] [Related]

  • 6. Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment.
    Kessel L, Lundeman JH, Herbst K, Andersen TV, Larsen M.
    J Cataract Refract Surg; 2010 Feb; 36(2):308-12. PubMed ID: 20152615
    [Abstract] [Full Text] [Related]

  • 7. Combined elastic and Raman light scattering of human eye lenses.
    Yaroslavsky IV, Yaroslavsky AN, Otto C, Puppels GJ, Vrensen GF, Duindam H, Greve J.
    Exp Eye Res; 1994 Oct; 59(4):393-9. PubMed ID: 7859814
    [Abstract] [Full Text] [Related]

  • 8. Fluorescence intensity profile of human lens sections.
    Jacobs R, Krohn DL.
    Invest Ophthalmol Vis Sci; 1981 Jan; 20(1):117-20. PubMed ID: 7451073
    [Abstract] [Full Text] [Related]

  • 9. Near-UV/blue light-induced fluorescence in the human lens: potential interference with visual function.
    Zuclich JA, Previc FH, Novar BJ, Edsall PR.
    J Biomed Opt; 2005 Jan; 10(4):44021. PubMed ID: 16178654
    [Abstract] [Full Text] [Related]

  • 10. In vivo dynamic light scattering characterization of a human lens: cataract index.
    Dhadwal HS, Wittpenn J.
    Curr Eye Res; 2000 Jun; 20(6):502-10. PubMed ID: 10980663
    [Abstract] [Full Text] [Related]

  • 11. Straylight effects with aging and lens extraction.
    Van Den Berg TJ, Van Rijn LJ, Michael R, Heine C, Coeckelbergh T, Nischler C, Wilhelm H, Grabner G, Emesz M, Barraquer RI, Coppens JE, Franssen L.
    Am J Ophthalmol; 2007 Sep; 144(3):358-363. PubMed ID: 17651678
    [Abstract] [Full Text] [Related]

  • 12. Relationship between spectral transmittance and slit lamp color of human lenses.
    van den Berg TJ, Felius J.
    Invest Ophthalmol Vis Sci; 1995 Feb; 36(2):322-9. PubMed ID: 7843903
    [Abstract] [Full Text] [Related]

  • 13. Low energy lamps and eye lens autofluorescence.
    Walsh G, Pearce EI.
    Med Hypotheses; 2010 Oct; 75(4):353-5. PubMed ID: 20392571
    [Abstract] [Full Text] [Related]

  • 14. Age-related changes in the absorption characteristics of the primate lens.
    Gaillard ER, Zheng L, Merriam JC, Dillon J.
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1454-9. PubMed ID: 10798662
    [Abstract] [Full Text] [Related]

  • 15. Sharp cutoff filters in intraocular lenses optimize the balance between light reception and light protection.
    van de Kraats J, van Norren D.
    J Cataract Refract Surg; 2007 May; 33(5):879-87. PubMed ID: 17466865
    [Abstract] [Full Text] [Related]

  • 16. Transmission of light to the aging human retina: possible implications for age related macular degeneration.
    Dillon J, Zheng L, Merriam JC, Gaillard ER.
    Exp Eye Res; 2004 Dec; 79(6):753-9. PubMed ID: 15642312
    [Abstract] [Full Text] [Related]

  • 17. [Methods for in vivo measurement of light transparency in the human crystalline lens].
    Marzec S.
    Klin Oczna; 2000 Dec; 102(6):423-6. PubMed ID: 11392802
    [Abstract] [Full Text] [Related]

  • 18. Spectral transmission of the human crystalline lens in adult and elderly persons: color and total transmission of visible light.
    Artigas JM, Felipe A, Navea A, Fandiño A, Artigas C.
    Invest Ophthalmol Vis Sci; 2012 Jun 26; 53(7):4076-84. PubMed ID: 22491402
    [Abstract] [Full Text] [Related]

  • 19. The photochemical attachment of the O-glucoside of 3-hydroxykynurenine to alpha-crystallin: a model for lenticular aging.
    Dillon J, Skonieczna M, Mandal K, Paik D.
    Photochem Photobiol; 1999 Feb 26; 69(2):248-53. PubMed ID: 10048317
    [Abstract] [Full Text] [Related]

  • 20. Tryptophan Raman/457.9-nm-excited fluorescence of intact guinea pig lenses in aging and ultraviolet light.
    Barron BC, Yu NT, Kuck JF.
    Invest Ophthalmol Vis Sci; 1987 May 26; 28(5):815-21. PubMed ID: 3570691
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.