These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 8263536

  • 1. Role of Mg-ATP in norepinephrine biosynthesis in intact chromaffin granules.
    Dhariwal KR, Shirvan MH, Levine M.
    J Neurochem; 1994 Jan; 62(1):355-60. PubMed ID: 8263536
    [Abstract] [Full Text] [Related]

  • 2. Ascorbic acid and Mg-ATP co-regulate dopamine beta-monooxygenase activity in intact chromaffin granules.
    Levine M, Hartzell W, Bdolah A.
    J Biol Chem; 1988 Dec 25; 263(36):19353-62. PubMed ID: 3143726
    [Abstract] [Full Text] [Related]

  • 3. Ascorbic acid within chromaffin granules. In situ kinetics of norepinephrine biosynthesis.
    Dhariwal KR, Washko P, Hartzell WO, Levine M.
    J Biol Chem; 1989 Sep 15; 264(26):15404-9. PubMed ID: 2768269
    [Abstract] [Full Text] [Related]

  • 4. Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla.
    Levine M, Morita K, Heldman E, Pollard HB.
    J Biol Chem; 1985 Dec 15; 260(29):15598-603. PubMed ID: 3877726
    [Abstract] [Full Text] [Related]

  • 5. Stimulatory effect of ascorbic acid on norepinephrine biosynthesis in digitonin-permeabilized adrenal medullary chromaffin cells.
    Morita K, Levine M, Pollard HB.
    J Neurochem; 1986 Mar 15; 46(3):939-45. PubMed ID: 3485180
    [Abstract] [Full Text] [Related]

  • 6. The reduction of membrane-bound dopamine beta-monooxygenase in resealed chromaffin granule ghosts. Is intragranular ascorbic acid a mediator for extragranular reducing equivalents?
    Wimalasena K, Wimalasena DS.
    J Biol Chem; 1995 Nov 17; 270(46):27516-24. PubMed ID: 7499210
    [Abstract] [Full Text] [Related]

  • 7. Semidehydroascorbic acid as an intermediate in norepinephrine biosynthesis in chromaffin granules.
    Dhariwal KR, Black CD, Levine M.
    J Biol Chem; 1991 Jul 15; 266(20):12908-14. PubMed ID: 1649168
    [Abstract] [Full Text] [Related]

  • 8. Protonmotive force and catecholamine transport in isolated chromaffin granules.
    Johnson RG, Scarpa A.
    J Biol Chem; 1979 May 25; 254(10):3750-60. PubMed ID: 438157
    [Abstract] [Full Text] [Related]

  • 9. Uptake of nucleotides and catecholamines by chromaffin granules from pig and horse adrenal medulla.
    Carmichael SW, Weber A, Winkler H.
    J Neurochem; 1980 Jul 25; 35(1):270-2. PubMed ID: 7452257
    [Abstract] [Full Text] [Related]

  • 10. Plasma membrane and chromaffin granule characteristics in digitonin-treated chromaffin cells.
    Holz RW, Senter RA.
    J Neurochem; 1985 Nov 25; 45(5):1548-57. PubMed ID: 3876408
    [Abstract] [Full Text] [Related]

  • 11. Further characteristics of the ATP-stimulated uptake of calcium into chromaffin granules.
    Burger A, Niedermaier W, Langer R, Bode U.
    J Neurochem; 1984 Sep 25; 43(3):806-15. PubMed ID: 6235324
    [Abstract] [Full Text] [Related]

  • 12. pH-dependence of the ATP-driven uptake of noradrenaline by bovine chromaffin-granule ghosts.
    Scherman D, Henry JP.
    Eur J Biochem; 1981 Jun 01; 116(3):535-9. PubMed ID: 6455291
    [Abstract] [Full Text] [Related]

  • 13. Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts.
    Knoth J, Zallakian M, Njus D.
    Biochemistry; 1981 Nov 10; 20(23):6625-9. PubMed ID: 6458332
    [Abstract] [Full Text] [Related]

  • 14. ATP synthesis and generation of electrochemical gradients of protons in the catecholamine storage organelle of the adrenal medulla.
    Taugner G, Wunderlich I.
    Z Naturforsch C Biosci; 1981 Nov 10; 36(11-12):1056-61. PubMed ID: 7324529
    [Abstract] [Full Text] [Related]

  • 15. Ascorbic acid regeneration in chromaffin granules. In situ kinetics.
    Dhariwal KR, Shirvan M, Levine M.
    J Biol Chem; 1991 Mar 25; 266(9):5384-7. PubMed ID: 1825997
    [Abstract] [Full Text] [Related]

  • 16. ATP-driven proton fluxes across membranes of secretory organelles.
    Cidon S, Ben-David H, Nelson N.
    J Biol Chem; 1983 Oct 10; 258(19):11684-8. PubMed ID: 6619137
    [Abstract] [Full Text] [Related]

  • 17. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential.
    Holz RW.
    Proc Natl Acad Sci U S A; 1978 Oct 10; 75(10):5190-4. PubMed ID: 33385
    [Abstract] [Full Text] [Related]

  • 18. Existence of an adenosine 5'-triphosphate dependent proton translocase in bovine neurosecretory granule membrane.
    Scherman D, Nordmann J, Henry JP.
    Biochemistry; 1982 Feb 16; 21(4):687-94. PubMed ID: 6462172
    [Abstract] [Full Text] [Related]

  • 19. ATP-dependent proton translocation in resealed chromaffin granule ghosts.
    Flatmark T, Ingebretsen OC.
    FEBS Lett; 1977 Feb 16; 78(1):53-6. PubMed ID: 17550
    [No Abstract] [Full Text] [Related]

  • 20. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients.
    Johnson RG, Pfister D, Carty SE, Scarpa A.
    J Biol Chem; 1979 Nov 10; 254(21):10963-72. PubMed ID: 40978
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.