These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 8268062

  • 1. Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise.
    Kemp GJ, Taylor DJ, Thompson CH, Hands LJ, Rajagopalan B, Styles P, Radda GK.
    NMR Biomed; 1993; 6(5):302-10. PubMed ID: 8268062
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Cellular energetics of dystrophic muscle.
    Kemp GJ, Taylor DJ, Dunn JF, Frostick SP, Radda GK.
    J Neurol Sci; 1993 Jun; 116(2):201-6. PubMed ID: 8393092
    [Abstract] [Full Text] [Related]

  • 4. Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure.
    Thompson CH, Davies RJ, Kemp GJ, Taylor DJ, Radda GK, Rajagopalan B.
    Thorax; 1993 May; 48(5):486-90. PubMed ID: 8322233
    [Abstract] [Full Text] [Related]

  • 5. Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle.
    Kemp GJ, Taylor DJ, Radda GK.
    NMR Biomed; 1993 May; 6(1):66-72. PubMed ID: 8457428
    [Abstract] [Full Text] [Related]

  • 6. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.
    Pipinos II, Shepard AD, Anagnostopoulos PV, Katsamouris A, Boska MD.
    J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885
    [Abstract] [Full Text] [Related]

  • 7. Reduced oxidative phosphorylation and proton efflux suggest reduced capillary blood supply in skeletal muscle of patients with dermatomyositis and polymyositis: a quantitative 31P-magnetic resonance spectroscopy and MRI study.
    Cea G, Bendahan D, Manners D, Hilton-Jones D, Lodi R, Styles P, Taylor DJ.
    Brain; 2002 Jul; 125(Pt 7):1635-45. PubMed ID: 12077012
    [Abstract] [Full Text] [Related]

  • 8. No evidence of mitochondrial abnormality in skeletal muscle of patients with iron-deficient anaemia.
    Thompson CH, Kemp GJ, Taylor DJ, Radda GK, Rajagopalan B.
    J Intern Med; 1993 Aug; 234(2):149-54. PubMed ID: 8340737
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis.
    Thompson CH, Kemp GJ, Sanderson AL, Radda GK.
    J Appl Physiol (1985); 1995 Jun; 78(6):2131-9. PubMed ID: 7665409
    [Abstract] [Full Text] [Related]

  • 11. Bioenergetics of skeletal muscle in mitochondrial myopathy.
    Taylor DJ, Kemp GJ, Radda GK.
    J Neurol Sci; 1994 Dec 20; 127(2):198-206. PubMed ID: 7707079
    [Abstract] [Full Text] [Related]

  • 12. Use of phosphocreatine kinetics to determine the influence of creatine on muscle mitochondrial respiration: an in vivo 31P-MRS study of oral creatine ingestion.
    Smith SA, Montain SJ, Zientara GP, Fielding RA.
    J Appl Physiol (1985); 2004 Jun 20; 96(6):2288-92. PubMed ID: 14978006
    [Abstract] [Full Text] [Related]

  • 13. Normal in vivo skeletal muscle oxidative metabolism in sporadic inclusion body myositis assessed by 31P-magnetic resonance spectroscopy.
    Lodi R, Taylor DJ, Tabrizi SJ, Hilton-Jones D, Squier MV, Seller A, Styles P, Schapira AH.
    Brain; 1998 Nov 20; 121 ( Pt 11)():2119-26. PubMed ID: 9827771
    [Abstract] [Full Text] [Related]

  • 14. Abnormalities in exercising skeletal muscle in congestive heart failure can be explained in terms of decreased mitochondrial ATP synthesis, reduced metabolic efficiency, and increased glycogenolysis.
    Kemp GJ, Thompson CH, Stratton JR, Brunotte F, Conway M, Adamopoulos S, Arnolda L, Radda GK, Rajagopalan B.
    Heart; 1996 Jul 20; 76(1):35-41. PubMed ID: 8774325
    [Abstract] [Full Text] [Related]

  • 15. Comparative determination of energy production rates and mitochondrial function using different 31P MRS quantitative methods in sedentary and trained subjects.
    Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef JP, Perrey S, Cozzone PJ, Bendahan D.
    NMR Biomed; 2011 May 20; 24(4):425-38. PubMed ID: 20963767
    [Abstract] [Full Text] [Related]

  • 16. Physical training improves skeletal muscle metabolism in patients with chronic heart failure.
    Adamopoulos S, Coats AJ, Brunotte F, Arnolda L, Meyer T, Thompson CH, Dunn JF, Stratton J, Kemp GJ, Radda GK.
    J Am Coll Cardiol; 1993 Apr 20; 21(5):1101-6. PubMed ID: 8459063
    [Abstract] [Full Text] [Related]

  • 17. Effect of chronic uraemia on skeletal muscle metabolism in man.
    Thompson CH, Kemp GJ, Taylor DJ, Ledingham JG, Radda GK, Rajagopalan B.
    Nephrol Dial Transplant; 1993 Apr 20; 8(3):218-22. PubMed ID: 8385287
    [Abstract] [Full Text] [Related]

  • 18. Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR.
    Arnold DL, Matthews PM, Radda GK.
    Magn Reson Med; 1984 Sep 20; 1(3):307-15. PubMed ID: 6571561
    [Abstract] [Full Text] [Related]

  • 19. Skeletal muscle metabolism in myotonic dystrophy A 31P magnetic resonance spectroscopy study.
    Barnes PR, Kemp GJ, Taylor DJ, Radda GK.
    Brain; 1997 Oct 20; 120 ( Pt 10)():1699-711. PubMed ID: 9365364
    [Abstract] [Full Text] [Related]

  • 20. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function.
    van den Broek NM, Ciapaite J, Nicolay K, Prompers JJ.
    Am J Physiol Cell Physiol; 2010 Nov 20; 299(5):C1136-43. PubMed ID: 20668212
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.