These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


315 related items for PubMed ID: 8268805

  • 1. Heme biosynthesis in mammalian systems: evidence of a Schiff base linkage between the pyridoxal 5'-phosphate cofactor and a lysine residue in 5-aminolevulinate synthase.
    Ferreira GC, Neame PJ, Dailey HA.
    Protein Sci; 1993 Nov; 2(11):1959-65. PubMed ID: 8268805
    [Abstract] [Full Text] [Related]

  • 2. Aminolevulinate synthase: lysine 313 is not essential for binding the pyridoxal phosphate cofactor but is essential for catalysis.
    Ferreira GC, Vajapey U, Hafez O, Hunter GA, Barber MJ.
    Protein Sci; 1995 May; 4(5):1001-6. PubMed ID: 7663334
    [Abstract] [Full Text] [Related]

  • 3. Aminolevulinate synthase: functionally important residues at a glycine loop, a putative pyridoxal phosphate cofactor-binding site.
    Gong J, Ferreira GC.
    Biochemistry; 1995 Feb 07; 34(5):1678-85. PubMed ID: 7849027
    [Abstract] [Full Text] [Related]

  • 4. Aspartate-279 in aminolevulinate synthase affects enzyme catalysis through enhancing the function of the pyridoxal 5'-phosphate cofactor.
    Gong J, Hunter GA, Ferreira GC.
    Biochemistry; 1998 Mar 10; 37(10):3509-17. PubMed ID: 9521672
    [Abstract] [Full Text] [Related]

  • 5. Active site of 5-aminolevulinate synthase resides at the subunit interface. Evidence from in vivo heterodimer formation.
    Tan D, Ferreira GC.
    Biochemistry; 1996 Jul 09; 35(27):8934-41. PubMed ID: 8688429
    [Abstract] [Full Text] [Related]

  • 6. Role of arginine 439 in substrate binding of 5-aminolevulinate synthase.
    Tan D, Harrison T, Hunter GA, Ferreira GC.
    Biochemistry; 1998 Feb 10; 37(6):1478-84. PubMed ID: 9484217
    [Abstract] [Full Text] [Related]

  • 7. 5-Aminolevulinate synthase and the first step of heme biosynthesis.
    Ferreira GC, Gong J.
    J Bioenerg Biomembr; 1995 Apr 10; 27(2):151-9. PubMed ID: 7592562
    [Abstract] [Full Text] [Related]

  • 8. Expression of mammalian 5-aminolevulinate synthase in Escherichia coli. Overproduction, purification, and characterization.
    Ferreira GC, Dailey HA.
    J Biol Chem; 1993 Jan 05; 268(1):584-90. PubMed ID: 8416963
    [Abstract] [Full Text] [Related]

  • 9. The role of tyrosine 121 in cofactor binding of 5-aminolevulinate synthase.
    Tan D, Barber MJ, Ferreira GC.
    Protein Sci; 1998 May 05; 7(5):1208-13. PubMed ID: 9605326
    [Abstract] [Full Text] [Related]

  • 10. Mutations at a glycine loop in aminolevulinate synthase affect pyridoxal phosphate cofactor binding and catalysis.
    Gong J, Kay CJ, Barber MJ, Ferreira GC.
    Biochemistry; 1996 Nov 12; 35(45):14109-17. PubMed ID: 8916896
    [Abstract] [Full Text] [Related]

  • 11. 2-Amino-3-ketobutyrate CoA ligase of Escherichia coli: stoichiometry of pyridoxal phosphate binding and location of the pyridoxyllysine peptide in the primary structure of the enzyme.
    Mukherjee JJ, Dekker EE.
    Biochim Biophys Acta; 1990 Jan 19; 1037(1):24-9. PubMed ID: 2104756
    [Abstract] [Full Text] [Related]

  • 12. Histidine 282 in 5-aminolevulinate synthase affects substrate binding and catalysis.
    Turbeville TD, Zhang J, Hunter GA, Ferreira GC.
    Biochemistry; 2007 May 22; 46(20):5972-81. PubMed ID: 17469798
    [Abstract] [Full Text] [Related]

  • 13. Lysine-313 of 5-aminolevulinate synthase acts as a general base during formation of the quinonoid reaction intermediates.
    Hunter GA, Ferreira GC.
    Biochemistry; 1999 Mar 23; 38(12):3711-8. PubMed ID: 10090759
    [Abstract] [Full Text] [Related]

  • 14. Delta-aminolevulinic acid synthase of rhodopseudomonas spheroides. Binding of pyridoxal phosphate to the enzyme.
    Nandi DL.
    Arch Biochem Biophys; 1978 Jun 23; 188(2):266-71. PubMed ID: 307943
    [No Abstract] [Full Text] [Related]

  • 15. X-linked pyridoxine-responsive sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase.
    Cox TC, Bottomley SS, Wiley JS, Bawden MJ, Matthews CS, May BK.
    N Engl J Med; 1994 Mar 10; 330(10):675-9. PubMed ID: 8107717
    [Abstract] [Full Text] [Related]

  • 16. Neurospora tryptophan synthase. Characterization of the pyridoxal phosphate binding site.
    Pratt ML, DeMoss JA.
    J Biol Chem; 1988 May 15; 263(14):6872-6. PubMed ID: 2966157
    [Abstract] [Full Text] [Related]

  • 17. Transient state kinetic investigation of 5-aminolevulinate synthase reaction mechanism.
    Zhang J, Ferreira GC.
    J Biol Chem; 2002 Nov 22; 277(47):44660-9. PubMed ID: 12191993
    [Abstract] [Full Text] [Related]

  • 18. Murine erythroid 5-aminolevulinate synthase: Truncation of a disordered N-terminal extension is not detrimental for catalysis.
    Stojanovski BM, Breydo L, Uversky VN, Ferreira GC.
    Biochim Biophys Acta; 2016 May 22; 1864(5):441-52. PubMed ID: 26854603
    [Abstract] [Full Text] [Related]

  • 19. A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst.
    Rege VD, Kredich NM, Tai CH, Karsten WE, Schnackerz KD, Cook PF.
    Biochemistry; 1996 Oct 15; 35(41):13485-93. PubMed ID: 8873618
    [Abstract] [Full Text] [Related]

  • 20. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.
    Brown BL, Kardon JR, Sauer RT, Baker TA.
    Structure; 2018 Apr 03; 26(4):580-589.e4. PubMed ID: 29551290
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.