These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 8272

  • 1. Receptor mechanisms in fish chromatophores--III. Neurally controlled melanosome aggregation in a siluroid (Parasilurus asotus) is strangely mediated by cholinoceptors.
    Fujii R, Miyashita Y.
    Comp Biochem Physiol C Comp Pharmacol; 1976; 55(1):43-9. PubMed ID: 8272
    [No Abstract] [Full Text] [Related]

  • 2. Receptor mechanisms in fish chromatophores--VIII. Mediated by beta adrenoceptors, catecholamines always act to disperse pigment in siluroid melanophores.
    Fujii R, Oshima N, Miyashita Y.
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(1):1-6. PubMed ID: 2861032
    [Abstract] [Full Text] [Related]

  • 3. Muscarinic cholinoceptors mediate neurally evoked pigment aggregation in glass catfish melanophores.
    Fujii R, Miyashita Y, Fujii Y.
    J Neural Transm; 1982; 54(1-2):29-39. PubMed ID: 6286871
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Control of melanosome movements in isolated skin melanophores of a catfish Clarias batrachus (Linn.).
    Ovais M.
    Indian J Physiol Pharmacol; 1994 Jul; 38(3):185-8. PubMed ID: 7814079
    [Abstract] [Full Text] [Related]

  • 9. Receptor mechanisms in fish chromatophores--VII. Muscarinic cholinoceptors and alpha adrenoceptors, both mediating pigment aggregation, strangely coexist in Corydoras melanophores.
    Kasukawa H, Fujii R.
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985 Jul; 80(2):211-5. PubMed ID: 2860997
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Release of ATP from adrenergic nerves controlling pigment aggregation in tilapia melanophores.
    Kumazawa T, Oshima N, Fujii R, Miyashita Y.
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984 Jul; 78(1):1-4. PubMed ID: 6146454
    [Abstract] [Full Text] [Related]

  • 14. Noradrenaline- and melatonin-mediated regulation of pigment aggregation in fish melanophores.
    Aspengren S, Sköld HN, Quiroga G, Mårtensson L, Wallin M.
    Pigment Cell Res; 2003 Feb; 16(1):59-64. PubMed ID: 12519126
    [Abstract] [Full Text] [Related]

  • 15. A study on melanophore receptors of Papiliochromis ramirezi (Teleostei, Cichlidae).
    Visconti MA, Castrucci AM, Valente D.
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984 Feb; 77(1):161-5. PubMed ID: 6141872
    [Abstract] [Full Text] [Related]

  • 16. An increase in extracellular Ca(2+) concentration induces pigment aggregation in teleostean melanophores.
    Yamada T, Fujii R.
    Zoolog Sci; 2002 Aug; 19(8):829-39. PubMed ID: 12193799
    [Abstract] [Full Text] [Related]

  • 17. Colchicine, cytochalasin B, cyclic AMP, and pigment granule translocation in melanophores of Uca pugilator and Hemigrapsus oregonensis (Crustacea: Decapoda).
    Lambert DT, Crowe JH.
    Comp Biochem Physiol C Comp Pharmacol; 1976 Aug; 54(2):115-21. PubMed ID: 8255
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The role of acetylcholine in the intracerebellar nuclei of the cat.
    McCance I.
    Brain Res; 1972 Dec 24; 48():265-79. PubMed ID: 4345595
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.