These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
181 related items for PubMed ID: 827551
1. The function and activity of certain membrane enzymes when localized on- and off- the membrane. Hochstadt J, Quinlan D. J Cell Physiol; 1976 Dec; 89(4):839-52. PubMed ID: 827551 [Abstract] [Full Text] [Related]
2. Enzymic capacities of purine de Novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues. Natsumeda Y, Prajda N, Donohue JP, Glover JL, Weber G. Cancer Res; 1984 Jun; 44(6):2475-9. PubMed ID: 6327016 [Abstract] [Full Text] [Related]
3. Transport of adenine, hypoxanthine and uracil into Escherichia coli. Burton K. Biochem J; 1977 Nov 15; 168(2):195-204. PubMed ID: 413544 [Abstract] [Full Text] [Related]
5. The location of purine phosphoribosyltransferase activities in Escherichia coli. Page MG, Burton K. Biochem J; 1978 Sep 15; 174(3):717-25. PubMed ID: 365172 [Abstract] [Full Text] [Related]
6. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein. Munagala NR, Wang CC. Biochemistry; 1998 Nov 24; 37(47):16612-9. PubMed ID: 9843428 [Abstract] [Full Text] [Related]
7. [Escherichia coli K-12 mutants assimilating adenine via a new metabolic pathway]. Kocharian ShM, Kocharian AM, Meliksetian GO, Akopian ZhI. Genetika; 1982 Nov 24; 18(6):906-15. PubMed ID: 6809533 [Abstract] [Full Text] [Related]
8. The existance of a group translocation transport mechanism in animal cells: uptake of the ribose moiety of inosine. Quinlan DC, Li CC, Hochstadt J. J Supramol Struct; 1976 Nov 24; 4(4):387-99. PubMed ID: 180353 [Abstract] [Full Text] [Related]
15. Regulation of purine utilization in bacteria. VII. Involvement of membrane-associated nucleoside phosphorylase in the uptake and the base-mediated loss of the ribose moiety of nucleosides by Salmonella typhimurium membrane vesicles. Rader RL, Hochstadt J. J Bacteriol; 1976 Oct 24; 128(1):290-301. PubMed ID: 789336 [Abstract] [Full Text] [Related]
16. Inosine-guanosine and adenosine phosphorylase activities in hepatopancreas of Helix pomatia (Gastropoda). Barankiewicz J, Jezewska MM. Comp Biochem Physiol B; 1976 Oct 24; 54(2):239-42. PubMed ID: 6192 [No Abstract] [Full Text] [Related]
17. Inhibition of phosphoribosylation of 5-fluorouracil by purines. Yoshida M, Hoshi A, Kuretani K. Nucleic Acids Symp Ser; 1980 Oct 24; (8):s175-8. PubMed ID: 6789308 [Abstract] [Full Text] [Related]
18. Regulation of purine utilization in bacteria. VI. Characterization of hypoxanthine and guanine uptake into isolated membrane vesicles from Salmonella typhimurium. Jackman LE, Hochstadt J. J Bacteriol; 1976 Apr 24; 126(1):312-26. PubMed ID: 770425 [Abstract] [Full Text] [Related]
19. [Characteristics of somatic cell hybrids (mouse x Chinese hamster) with different relationships between chromosome sets of related species. III. Determination of the activity of the pyrophosphorylases of inosine and adenylic acid]. Moiseenko EV, Volkova LV. Genetika; 1974 Dec 24; 10(12):67-81. PubMed ID: 4478958 [No Abstract] [Full Text] [Related]
20. Purine phosphoribosyltransferases in the hepatopancreas of Helix pomatia (Gastropoda). Barankiewicz J, Jezewska MM. Comp Biochem Physiol B; 1975 Oct 15; 52(2):239-44. PubMed ID: 240607 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]