These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions. He W, Ren T. Sci Rep; 2013 Oct; 3():1874. PubMed ID: 23695199 [Abstract] [Full Text] [Related]
7. The sources of electrically evoked otoacoustic emissions. Zou Y, Zheng J, Nuttall AL, Ren T. Hear Res; 2003 Jun; 180(1-2):91-100. PubMed ID: 12782357 [Abstract] [Full Text] [Related]
8. Fast reverse propagation of sound in the living cochlea. He W, Fridberger A, Porsov E, Ren T. Biophys J; 2010 Jun 02; 98(11):2497-505. PubMed ID: 20513393 [Abstract] [Full Text] [Related]
9. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning. Raufer S, Verhulst S. Hear Res; 2016 Dec 02; 342():150-160. PubMed ID: 27989947 [Abstract] [Full Text] [Related]
10. The shape of 2f1-f2 suppression tuning curves reflects basilar membrane specializations in the mustached bat, Pteronotus parnellii. Frank G, Kössl M. Hear Res; 1995 Mar 02; 83(1-2):151-60. PubMed ID: 7607981 [Abstract] [Full Text] [Related]
16. Effects of electrical biasing on electrically-evoked otoacoustic emissions. Roddy J, Hubbard AE, Mountain DC, Xue S. Hear Res; 1994 Mar 02; 73(2):148-54. PubMed ID: 8188543 [Abstract] [Full Text] [Related]
17. Acoustical modulation of electrically evoked otoacoustic emission in intact gerbil cochlea. Ren T, Nuttall AL. Hear Res; 1998 Jun 02; 120(1-2):7-16. PubMed ID: 9667426 [Abstract] [Full Text] [Related]
18. Otoacoustic emissions from the cochlea of the 'constant frequency' bats, Pteronotus parnellii and Rhinolophus rouxi. Kössl M. Hear Res; 1994 Jan 02; 72(1-2):59-72. PubMed ID: 8150746 [Abstract] [Full Text] [Related]