These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
300 related items for PubMed ID: 8277520
1. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels. Horowitz SB, Finley BL. J Toxicol Environ Health; 1993 Dec; 40(4):585-99. PubMed ID: 8277520 [Abstract] [Full Text] [Related]
2. Review of the allergic contact dermatitis hazard posed by chromium-contaminated soil: identifying a "safe" concentration. Paustenbach DJ, Sheehan PJ, Paull JM, Wisser LM, Finley BL. J Toxicol Environ Health; 1992 Sep; 37(1):177-207. PubMed ID: 1522610 [Abstract] [Full Text] [Related]
7. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Broadway A, Cave MR, Wragg J, Fordyce FM, Bewley RJ, Graham MC, Ngwenya BT, Farmer JG. Sci Total Environ; 2010 Dec 15; 409(2):267-77. PubMed ID: 21035835 [Abstract] [Full Text] [Related]
8. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment. Tinjum JM, Benson CH, Edil TB. Sci Total Environ; 2008 Feb 25; 391(1):13-25. PubMed ID: 18067949 [Abstract] [Full Text] [Related]
17. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue. Jagupilla SC, Wazne M, Moon DH. Chemosphere; 2015 Oct 25; 136():95-101. PubMed ID: 25966327 [Abstract] [Full Text] [Related]
18. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Cao J, Zhang WX. J Hazard Mater; 2006 May 20; 132(2-3):213-9. PubMed ID: 16621279 [Abstract] [Full Text] [Related]