These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 8282650

  • 1. High muscle blood flow in man: is maximal O2 extraction compromised?
    Richardson RS, Poole DC, Knight DR, Kurdak SS, Hogan MC, Grassi B, Johnson EC, Kendrick KF, Erickson BK, Wagner PD.
    J Appl Physiol (1985); 1993 Oct; 75(4):1911-6. PubMed ID: 8282650
    [Abstract] [Full Text] [Related]

  • 2. Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps.
    Richardson RS, Grassi B, Gavin TP, Haseler LJ, Tagore K, Roca J, Wagner PD.
    J Appl Physiol (1985); 1999 Mar; 86(3):1048-53. PubMed ID: 10066722
    [Abstract] [Full Text] [Related]

  • 3. Relationship between body and leg VO2 during maximal cycle ergometry.
    Knight DR, Poole DC, Schaffartzik W, Guy HJ, Prediletto R, Hogan MC, Wagner PD.
    J Appl Physiol (1985); 1992 Sep; 73(3):1114-21. PubMed ID: 1400024
    [Abstract] [Full Text] [Related]

  • 4. High muscle blood flows are not attenuated by recruitment of additional muscle mass.
    Richardson RS, Kennedy B, Knight DR, Wagner PD.
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1545-52. PubMed ID: 7503247
    [Abstract] [Full Text] [Related]

  • 5. Determinants of maximal exercise VO2 during single leg knee-extensor exercise in humans.
    Richardson RS, Knight DR, Poole DC, Kurdak SS, Hogan MC, Grassi B, Wagner PD.
    Am J Physiol; 1995 Apr; 268(4 Pt 2):H1453-61. PubMed ID: 7733346
    [Abstract] [Full Text] [Related]

  • 6. Determinants of oxygen uptake. Implications for exercise testing.
    Poole DC, Richardson RS.
    Sports Med; 1997 Nov; 24(5):308-20. PubMed ID: 9368277
    [Abstract] [Full Text] [Related]

  • 7. Systemic and vastus lateralis muscle blood flow and O2 extraction during ramp incremental cycle exercise.
    Murias JM, Spencer MD, Keir DA, Paterson DH.
    Am J Physiol Regul Integr Comp Physiol; 2013 May 01; 304(9):R720-5. PubMed ID: 23515617
    [Abstract] [Full Text] [Related]

  • 8. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass.
    Calbet JA, Rådegran G, Boushel R, Saltin B.
    J Physiol; 2009 Jan 15; 587(2):477-90. PubMed ID: 19047206
    [Abstract] [Full Text] [Related]

  • 9. Red blood cell transit time in man: theoretical effects of capillary density.
    Richardson RS, Poole DC, Knight DR, Wagner PD.
    Adv Exp Med Biol; 1994 Jan 15; 361():521-32. PubMed ID: 7597979
    [Abstract] [Full Text] [Related]

  • 10. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans.
    Poole DC, Schaffartzik W, Knight DR, Derion T, Kennedy B, Guy HJ, Prediletto R, Wagner PD.
    J Appl Physiol (1985); 1991 Oct 15; 71(4):1245-60. PubMed ID: 1757346
    [Abstract] [Full Text] [Related]

  • 11. Pulmonary and leg VO2 during submaximal exercise: implications for muscular efficiency.
    Poole DC, Gaesser GA, Hogan MC, Knight DR, Wagner PD.
    J Appl Physiol (1985); 1992 Feb 15; 72(2):805-10. PubMed ID: 1559962
    [Abstract] [Full Text] [Related]

  • 12. Respiratory muscle work compromises leg blood flow during maximal exercise.
    Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Dempsey JA.
    J Appl Physiol (1985); 1997 May 15; 82(5):1573-83. PubMed ID: 9134907
    [Abstract] [Full Text] [Related]

  • 13. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans.
    Mortensen SP, Dawson EA, Yoshiga CC, Dalsgaard MK, Damsgaard R, Secher NH, González-Alonso J.
    J Physiol; 2005 Jul 01; 566(Pt 1):273-85. PubMed ID: 15860533
    [Abstract] [Full Text] [Related]

  • 14. O2 uptake kinetics during exercise at peak O2 uptake.
    Scheuermann BW, Barstow TJ.
    J Appl Physiol (1985); 2003 Nov 01; 95(5):2014-22. PubMed ID: 12882991
    [Abstract] [Full Text] [Related]

  • 15. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise.
    Rossiter HB, Kowalchuk JM, Whipp BJ.
    J Appl Physiol (1985); 2006 Mar 01; 100(3):764-70. PubMed ID: 16282428
    [Abstract] [Full Text] [Related]

  • 16. Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia?
    Rowell LB, Saltin B, Kiens B, Christensen NJ.
    Am J Physiol; 1986 Nov 01; 251(5 Pt 2):H1038-44. PubMed ID: 3777192
    [Abstract] [Full Text] [Related]

  • 17. Hyperoxia does not increase peak muscle oxygen uptake in small muscle group exercise.
    Pedersen PK, Kiens B, Saltin B.
    Acta Physiol Scand; 1999 Aug 01; 166(4):309-18. PubMed ID: 10468668
    [Abstract] [Full Text] [Related]

  • 18. The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue.
    Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ.
    J Appl Physiol (1985); 2003 Nov 01; 95(5):1901-7. PubMed ID: 12857763
    [Abstract] [Full Text] [Related]

  • 19. Influence of muscle metabolic heterogeneity in determining the V̇o2p kinetic response to ramp-incremental exercise.
    Keir DA, Benson AP, Love LK, Robertson TC, Rossiter HB, Kowalchuk JM.
    J Appl Physiol (1985); 2016 Mar 01; 120(5):503-13. PubMed ID: 26679614
    [Abstract] [Full Text] [Related]

  • 20. Low-intensity training increases peak arm VO2 by enhancing both convective and diffusive O2 delivery.
    Boushel R, Ara I, Gnaiger E, Helge JW, González-Alonso J, Munck-Andersen T, Sondergaard H, Damsgaard R, van Hall G, Saltin B, Calbet JA.
    Acta Physiol (Oxf); 2014 May 01; 211(1):122-34. PubMed ID: 24528535
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.