These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 8285215

  • 21. NAD+-induced inhibition of phosphate transport in canine renal brush-border membranes. Mediation through a process other than or in addition to NAD+ hydrolysis.
    Hammerman MR, Corpus VM, Morrissey JJ.
    Biochim Biophys Acta; 1983 Jul 13; 732(1):110-6. PubMed ID: 6871184
    [Abstract] [Full Text] [Related]

  • 22. Electrogenic transport of 5-oxoproline in rabbit renal brush-border membrane vesicles. Effect of intravesicular potassium.
    Ganapathy V, Leibach FH.
    Biochim Biophys Acta; 1983 Jul 13; 732(1):32-40. PubMed ID: 6871198
    [Abstract] [Full Text] [Related]

  • 23. Regulation of canine renal vesicle Pi transport by growth hormone and parathyroid hormone.
    Hammerman MR, Karl IE, Hruska KA.
    Biochim Biophys Acta; 1980 Dec 12; 603(2):322-35. PubMed ID: 7459358
    [Abstract] [Full Text] [Related]

  • 24. Renal Na(+)-phosphate cotransport in X-linked Hyp mice responds appropriately to Na+ gradient, membrane potential, and pH.
    Harvey N, Tenenhouse HS.
    J Bone Miner Res; 1992 May 12; 7(5):563-71. PubMed ID: 1319668
    [Abstract] [Full Text] [Related]

  • 25. Parathyroid hormone inhibition of phosphate transport in renal brush border vesicles from phosphate-depleted dogs.
    Hruska KA, Hammerman MR.
    Biochim Biophys Acta; 1981 Jul 20; 645(2):351-6. PubMed ID: 7272293
    [Abstract] [Full Text] [Related]

  • 26. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K, Kim KR, Kim JY, Park YS.
    Toxicol Appl Pharmacol; 1997 Aug 20; 145(2):255-9. PubMed ID: 9266797
    [Abstract] [Full Text] [Related]

  • 27. Phosphate transport in brush-border membranes from control and rachitic pig kidney and small intestine.
    Brandis M, Harmeyer J, Kaune R, Mohrmann M, Murer H, Zimolo Z.
    J Physiol; 1987 Mar 20; 384():479-90. PubMed ID: 2821238
    [Abstract] [Full Text] [Related]

  • 28. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles.
    Shiuan D, Weinstein SW.
    Am J Physiol; 1984 Nov 20; 247(5 Pt 2):F837-47. PubMed ID: 6093593
    [Abstract] [Full Text] [Related]

  • 29. Intravesicular NAD has no effect on sodium-dependent phosphate transport in isolated renal brush border membrane vesicles.
    Gmaj P, Biber J, Angielski S, Stange G, Murer H.
    Pflugers Arch; 1984 Jan 20; 400(1):60-5. PubMed ID: 6709490
    [Abstract] [Full Text] [Related]

  • 30. Pi transport, phosphorylation, and dephosphorylation in renal membranes from HYP/Y mice.
    Hammerman MR, Chase LR.
    Am J Physiol; 1983 Dec 20; 245(6):F701-6. PubMed ID: 6660293
    [Abstract] [Full Text] [Related]

  • 31. Thyroid hormones increase renal brush border membrane transport of phosphate in X-linked hypophosphatemic (Hyp) mice.
    Kiebzak GM, Dousa TP.
    Endocrinology; 1985 Aug 20; 117(2):613-9. PubMed ID: 4017950
    [Abstract] [Full Text] [Related]

  • 32. [Study on the mechanism of placental transport of phosphate (using human placental microvillous (brush border) membrane vesicles)].
    Iioka H, Moriyama I, Amasaki M, Itoh K, Hino K, Ichijo M.
    Nihon Sanka Fujinka Gakkai Zasshi; 1985 Dec 20; 37(12):2675-80. PubMed ID: 4086899
    [Abstract] [Full Text] [Related]

  • 33. K(+)-H+ exchange activity in brush-border membrane vesicles isolated from chick small intestine.
    Peral MJ, Cano M, Ilundáin AA.
    Eur J Biochem; 1995 Aug 01; 231(3):682-6. PubMed ID: 7649168
    [Abstract] [Full Text] [Related]

  • 34. Cimetidine transport in rabbit renal cortical brush-border membrane vesicles.
    McKinney TD, Kunnemann ME.
    Am J Physiol; 1987 Mar 01; 252(3 Pt 2):F525-35. PubMed ID: 3826391
    [Abstract] [Full Text] [Related]

  • 35. Transport characteristics of glutamine in human intestinal brush-border membrane vesicles.
    Said HM, Van Voorhis K, Ghishan FK, Abumurad N, Nylander W, Redha R.
    Am J Physiol; 1989 Jan 01; 256(1 Pt 1):G240-5. PubMed ID: 2492158
    [Abstract] [Full Text] [Related]

  • 36. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline.
    Ganapathy V, Leibach FH.
    J Biol Chem; 1983 Dec 10; 258(23):14189-92. PubMed ID: 6643475
    [Abstract] [Full Text] [Related]

  • 37. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine.
    Tsuji A, Terasaki T, Tamai I, Hirooka H.
    J Pharmacol Exp Ther; 1987 May 10; 241(2):594-601. PubMed ID: 3572815
    [Abstract] [Full Text] [Related]

  • 38. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex. Coupling to proton gradients and K+ diffusion potentials.
    Warnock DG, Yee VJ.
    J Clin Invest; 1981 Jan 10; 67(1):103-15. PubMed ID: 7451645
    [Abstract] [Full Text] [Related]

  • 39. Na+ transport by human placental brush border membranes: are there several mechanisms?
    Brunette MG, Leclerc, Claveau D.
    J Cell Physiol; 1996 Apr 10; 167(1):72-80. PubMed ID: 8698842
    [Abstract] [Full Text] [Related]

  • 40. Mechanism of urate and p-aminohippurate transport in rat renal microvillus membrane vesicles.
    Kahn AM, Branham S, Weinman EJ.
    Am J Physiol; 1983 Aug 10; 245(2):F151-8. PubMed ID: 6309010
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.