These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 8294422

  • 1. Kinetic heterogeneity of phosphoenzyme of Na,K-ATPase modeled by unmixed lipid phases. Competence of the phosphointermediate.
    Klodos I, Post RL, Forbush B.
    J Biol Chem; 1994 Jan 21; 269(3):1734-43. PubMed ID: 8294422
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Leucine 332 at the boundary between the fourth transmembrane segment and the cytoplasmic domain of Na+,K+-ATPase plays a pivotal role in the ion translocating conformational changes.
    Vilsen B.
    Biochemistry; 1997 Oct 28; 36(43):13312-24. PubMed ID: 9341223
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Sodium ion discharge from pig kidney Na+, K+-ATPase Na+-dependency of the E1P-E2P equilibrium in the absence of KCl.
    Hara Y, Nakao M.
    J Biochem; 1981 Oct 28; 90(4):923-31. PubMed ID: 6273395
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Steady-state levels of phosphorylated intermediates of (Na,K)-ATPase monitored with oligomycin and anthroylouabain.
    Fortes PA, Lee JA.
    J Biol Chem; 1984 Sep 25; 259(18):11176-9. PubMed ID: 6088533
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Interaction of ATP with the phosphoenzyme of the Na+,K+-ATPase.
    Khalid M, Fouassier G, Apell HJ, Cornelius F, Clarke RJ.
    Biochemistry; 2010 Feb 16; 49(6):1248-58. PubMed ID: 20063899
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Temperature effects on sodium pump phosphoenzyme distribution in human red blood cells.
    Kaplan JH, Kenney LJ.
    J Gen Physiol; 1985 Jan 16; 85(1):123-36. PubMed ID: 2578548
    [Abstract] [Full Text] [Related]

  • 16. The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model.
    Mahaney JE, Thomas DD, Froehlich JP.
    Biochemistry; 2004 Apr 13; 43(14):4400-16. PubMed ID: 15065885
    [Abstract] [Full Text] [Related]

  • 17. Two different phosphorylation-dephosphorylation cycles of Na,K-ATPase proteoliposomes accompanying Na+ transport in the absence of K+.
    Yoda A, Yoda S.
    J Biol Chem; 1987 Jan 05; 262(1):110-5. PubMed ID: 3025196
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. (Na+ + K+)-ATPase: confirmation of the three-pool model for the phosphointermediates of Na+-ATPase activity. Estimation of the enzyme-ATP dissociation rate constant.
    Klodos I, Nørby JG.
    Biochim Biophys Acta; 1987 Feb 26; 897(2):302-14. PubMed ID: 3028481
    [Abstract] [Full Text] [Related]

  • 20. Conformational change accompanying formation of oligomycin-induced Na(+)-bound forms and their conversion to ADP-sensitive phosphoenzymes in Na+,K(+)-ATPase.
    Taniguchi K, Sasaki T, Shinoguchi E, Kamo Y, Ito E.
    J Biochem; 1991 Feb 26; 109(2):299-306. PubMed ID: 1650775
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.