These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
321 related items for PubMed ID: 8295939
1. Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Sagvolden T, Pettersen MB, Larsen MC. Physiol Behav; 1993 Dec; 54(6):1047-55. PubMed ID: 8295939 [Abstract] [Full Text] [Related]
2. Behavior of hypertensive and hyperactive rat strains: hyperactivity is not unitarily determined. Sagvolden T, Hendley ED, Knardahl S. Physiol Behav; 1992 Jul; 52(1):49-57. PubMed ID: 1529013 [Abstract] [Full Text] [Related]
3. Dissociation of hypertension and fixed interval responding in two separate strains of genetically hypertensive rat. Wickens JR, Macfarlane J, Booker C, McNaughton N. Behav Brain Res; 2004 Jul 09; 152(2):393-401. PubMed ID: 15196808 [Abstract] [Full Text] [Related]
4. Extinction learning deficit in a rodent model of attention-deficit hyperactivity disorder. Brackney RJ, Cheung TH, Herbst K, Hill JC, Sanabria F. Behav Brain Funct; 2012 Dec 13; 8():59. PubMed ID: 23237608 [Abstract] [Full Text] [Related]
5. Intraindividual variability (IIV) in an animal model of ADHD - the Spontaneously Hypertensive Rat. Perry GM, Sagvolden T, Faraone SV. Behav Brain Funct; 2010 Oct 06; 6():56. PubMed ID: 20925933 [Abstract] [Full Text] [Related]
6. The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Wultz B, Sagvolden T, Moser EI, Moser MB. Behav Neural Biol; 1990 Jan 06; 53(1):88-102. PubMed ID: 2302145 [Abstract] [Full Text] [Related]
7. Stimulus control in two rodent models of attention-deficit/hyperactivity disorder. Fox AE, Caramia SR, Haskell MM, Ramey AL, Singha D. Behav Processes; 2017 Feb 06; 135():16-24. PubMed ID: 27864066 [Abstract] [Full Text] [Related]
8. Sensitivity to delay of reinforcement in two animal models of attention deficit hyperactivity disorder (ADHD). Sutherland KR, Alsop B, McNaughton N, Hyland BI, Tripp G, Wickens JR. Behav Brain Res; 2009 Dec 28; 205(2):372-6. PubMed ID: 19616039 [Abstract] [Full Text] [Related]
9. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 3. Control by reinforcer rate changes and predictability. Williams J, Sagvolden G, Taylor E, Sagvolden T. Behav Brain Res; 2009 Mar 17; 198(2):291-7. PubMed ID: 18824035 [Abstract] [Full Text] [Related]
10. Problems with spontaneously hypertensive rats (SHR) as a model of attention-deficit/hyperactivity disorder (AD/HD). Alsop B. J Neurosci Methods; 2007 May 15; 162(1-2):42-8. PubMed ID: 17241669 [Abstract] [Full Text] [Related]
11. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 1. Control by place, timing, and reinforcement rate. Williams J, Sagvolden G, Taylor E, Sagvolden T. Behav Brain Res; 2009 Mar 17; 198(2):273-82. PubMed ID: 18824036 [Abstract] [Full Text] [Related]
12. Response disinhibition may be explained as an extinction deficit in an animal model of attention-deficit/hyperactivity disorder (ADHD). Johansen EB, Sagvolden T. Behav Brain Res; 2004 Mar 02; 149(2):183-96. PubMed ID: 15129781 [Abstract] [Full Text] [Related]
13. The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Sagvolden T, Metzger MA, Schiørbeck HK, Rugland AL, Spinnangr I, Sagvolden G. Behav Neural Biol; 1992 Sep 02; 58(2):103-12. PubMed ID: 1360797 [Abstract] [Full Text] [Related]
14. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 2. Control by novelty. Williams J, Sagvolden G, Taylor E, Sagvolden T. Behav Brain Res; 2009 Mar 17; 198(2):283-90. PubMed ID: 18824039 [Abstract] [Full Text] [Related]
15. A quantitative cytochrome oxidase mapping study, cross-regional and neurobehavioural correlations in the anterior forebrain of an animal model of Attention Deficit Hyperactivity Disorder. Papa M, Berger DF, Sagvolden T, Sergeant JA, Sadile AG. Behav Brain Res; 1998 Jul 17; 94(1):197-211. PubMed ID: 9708850 [Abstract] [Full Text] [Related]
16. Nicotine-stimulated release of [3H]norepinephrine is reduced in the hippocampus of an animal model of attention-deficit/hyperactivity disorder, the spontaneously hypertensive rat. Sterley TL, Howells FM, Russell VA. Brain Res; 2014 Jul 14; 1572():1-10. PubMed ID: 24833064 [Abstract] [Full Text] [Related]
17. Behavioral effects of intra-cranial self-stimulation in an animal model of attention-deficit/hyperactivity disorder (ADHD). Johansen EB, Sagvolden T. Behav Brain Res; 2005 Jul 01; 162(1):32-46. PubMed ID: 15922065 [Abstract] [Full Text] [Related]
18. Effects of delayed reinforcers on the behavior of an animal model of attention-deficit/hyperactivity disorder (ADHD). Johansen EB, Sagvolden T, Kvande G. Behav Brain Res; 2005 Jul 01; 162(1):47-61. PubMed ID: 15922066 [Abstract] [Full Text] [Related]
19. Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. van den Bergh FS, Bloemarts E, Chan JS, Groenink L, Olivier B, Oosting RS. Pharmacol Biochem Behav; 2006 Mar 01; 83(3):380-90. PubMed ID: 16580713 [Abstract] [Full Text] [Related]
20. Baseline behavior, but not sensitivity to stimulant drugs, differs among spontaneously hypertensive, Wistar-Kyoto, and Sprague-Dawley rat strains. Ferguson SA, Paule MG, Cada A, Fogle CM, Gray EP, Berry KJ. Neurotoxicol Teratol; 2007 Mar 01; 29(5):547-61. PubMed ID: 17689921 [Abstract] [Full Text] [Related] Page: [Next] [New Search]