These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
73 related items for PubMed ID: 8301257
1. Changes in membrane potential associated with cell swelling and regulatory volume decrease in barnacle muscle cells. Berman DM, Peña-Rasgado C, Rasgado-Flores H. J Exp Zool; 1994 Feb 01; 268(2):97-103. PubMed ID: 8301257 [Abstract] [Full Text] [Related]
2. Osmolytes responsible for volume reduction under isosmotic or hypoosmotic conditions in Barnacle muscle cells. Peña-Rasgado C, Pierce SK, Rasgado-Flores H. Cell Mol Biol (Noisy-le-grand); 2001 Jul 01; 47(5):841-53. PubMed ID: 11728098 [Abstract] [Full Text] [Related]
3. Characterization of regulatory volume decrease in the THP-1 and HL-60 human myelocytic cell lines. Gallin EK, Mason TM, Moran A. J Cell Physiol; 1994 Jun 01; 159(3):573-81. PubMed ID: 7514614 [Abstract] [Full Text] [Related]
4. External Ca effect on water permeability, regulatory volume decrease, and extracellular space in barnacle muscle cells. Berman DM, Peña-Rasgado C, Holmgren M, Hawkins P, Rasgado-Flores H. Am J Physiol; 1993 Oct 01; 265(4 Pt 1):C1128-37. PubMed ID: 8238303 [Abstract] [Full Text] [Related]
5. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon. Lang RJ, Watson MJ. Br J Pharmacol; 1998 Feb 01; 123(3):505-17. PubMed ID: 9504392 [Abstract] [Full Text] [Related]
6. Effect of isosmotic removal of extracellular Ca2+ and of membrane potential on cell volume in muscle cells. Peña-Rasgado C, McGruder KD, Summers JC, Rasgado-Flores H. Am J Physiol; 1994 Sep 01; 267(3 Pt 1):C768-75. PubMed ID: 7943206 [Abstract] [Full Text] [Related]
7. Opposite roles of cAMP and cGMP on volume loss in muscle cells. Peña-Rasgado C, Kimler VA, McGruder KD, Tie J, Rasgado-Flores H. Am J Physiol; 1994 Nov 01; 267(5 Pt 1):C1319-28. PubMed ID: 7977695 [Abstract] [Full Text] [Related]
8. Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease. Cheung RK, Grinstein S, Dosch HM, Gelfand EW. J Cell Physiol; 1982 Aug 01; 112(2):189-96. PubMed ID: 6288741 [Abstract] [Full Text] [Related]
9. Cell volume regulation following hypotonic stress in the intestine of the eel, Anguilla anguilla, is Ca2+-dependent. Trischitta F, Denaro MG, Faggio C. Comp Biochem Physiol B Biochem Mol Biol; 2005 Mar 01; 140(3):359-67. PubMed ID: 15694583 [Abstract] [Full Text] [Related]
10. Volume regulatory decrease in UMR-106.01 cells is mediated by specific alpha1 subunits of L-type calcium channels. Kizer N, Harter L, Hruska K, Alvarez U, Duncan R. Cell Biochem Biophys; 1999 Mar 01; 31(1):65-79. PubMed ID: 10505668 [Abstract] [Full Text] [Related]
11. TRPV4 exhibits a functional role in cell-volume regulation. Becker D, Blase C, Bereiter-Hahn J, Jendrach M. J Cell Sci; 2005 Jun 01; 118(Pt 11):2435-40. PubMed ID: 15923656 [Abstract] [Full Text] [Related]
12. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels. Cifelli C, Boudreault L, Gong B, Bercier JP, Renaud JM. Exp Physiol; 2008 Oct 01; 93(10):1126-38. PubMed ID: 18586858 [Abstract] [Full Text] [Related]
13. Role of volume-stimulated osmolyte and anion channels in volume regulation by mammalian sperm. Petrunkina AM, Harrison RA, Ekhlasi-Hundrieser M, Töpfer-Petersen E. Mol Hum Reprod; 2004 Nov 01; 10(11):815-23. PubMed ID: 15361553 [Abstract] [Full Text] [Related]
14. TRPV4 Contributes to Resting Membrane Potential in Retinal Müller Cells: Implications in Cell Volume Regulation. Netti V, Fernández J, Kalstein M, Pizzoni A, Di Giusto G, Rivarola V, Ford P, Capurro C. J Cell Biochem; 2017 Aug 01; 118(8):2302-2313. PubMed ID: 28098409 [Abstract] [Full Text] [Related]
15. Effect of hypotonic shock on cultured pavement cells from freshwater or seawater rainbow trout gills. Leguen I, Prunet P. Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb 01; 137(2):259-69. PubMed ID: 15123200 [Abstract] [Full Text] [Related]
16. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium. Lionetto MG, Giordano ME, De Nuccio F, Nicolardi G, Hoffmann EK, Schettino T. J Exp Biol; 2005 Feb 01; 208(Pt 4):749-60. PubMed ID: 15695766 [Abstract] [Full Text] [Related]
17. Role of AQP2 in activation of calcium entry by hypotonicity: implications in cell volume regulation. Galizia L, Flamenco MP, Rivarola V, Capurro C, Ford P. Am J Physiol Renal Physiol; 2008 Mar 01; 294(3):F582-90. PubMed ID: 18094031 [Abstract] [Full Text] [Related]
18. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells. Friis UG, Praetorius HA, Knudsen T, Johansen T. Br J Pharmacol; 1997 Oct 01; 122(4):599-604. PubMed ID: 9375953 [Abstract] [Full Text] [Related]