These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
107 related items for PubMed ID: 8306451
21. Tonic contraction of canine gastric muscle during long-lasting calcium removal and its dependence on magnesium. Filipponi K, Golenhofen K, Hofstetter V, Hohnsbein J, Lammel E, Lukanow J. J Physiol; 1987 Dec; 393():375-97. PubMed ID: 3128659 [Abstract] [Full Text] [Related]
22. Mobilization of intracellular calcium by extracellular ATP and by calcium ionophores in the Ehrlich ascites-tumour cell. Artalejo AR, García-Sancho J. Biochim Biophys Acta; 1988 Jun 07; 941(1):48-54. PubMed ID: 2453216 [Abstract] [Full Text] [Related]
23. Studies on the differential morphological alterations in human and goat erythrocytes against ATP depletion and Ca(2+)-induced stresses. Zaidi A, Khan MT, Mirza M, Ahmad I, Saleemuddin M. Biochem Mol Biol Int; 1995 Oct 07; 37(3):517-26. PubMed ID: 8595392 [Abstract] [Full Text] [Related]
24. Characterization of lactic acid formation and adenosine triphosphate consumption in calcium-loaded erythrocytes of broiler chickens. Imaeda N. Poult Sci; 2000 Nov 07; 79(11):1543-7. PubMed ID: 11092322 [Abstract] [Full Text] [Related]
25. Effects of divalent cations on lipid flip-flop in the human erythrocyte membrane. Henseleit U, Plasa G, Haest C. Biochim Biophys Acta; 1990 Nov 02; 1029(1):127-35. PubMed ID: 2223803 [Abstract] [Full Text] [Related]
26. The effect of calcium ionophore A23187 on the ATP level of human erythrocytes. Taylor D, Baker R, Hochstein P. Biochem Biophys Res Commun; 1976 May 23; 76(2):205-11. PubMed ID: 141283 [No Abstract] [Full Text] [Related]
27. The effect of intracellular calcium on the sodium pump of human red cells. Brown AM, Lew VL. J Physiol; 1983 Oct 23; 343():455-93. PubMed ID: 6315922 [Abstract] [Full Text] [Related]
28. Calcium affects phosphoinositide turnover in human erythrocytes. Folk P, Strunecká A. Gen Physiol Biophys; 1990 Jun 23; 9(3):281-90. PubMed ID: 2168334 [Abstract] [Full Text] [Related]
29. Detection and separation of human red cells with different calcium contents following uniform calcium permeabilization. García-Sancho J, Lew VL. J Physiol; 1988 Dec 23; 407():505-22. PubMed ID: 3151493 [Abstract] [Full Text] [Related]
30. Relations between ion shifting, ATP depletion and lactic acid formation in human red cells during moderate calcium loading using the ionophore A 23187. Till U, Petermann H, Wenz I, Frunder H. Acta Biol Med Ger; 1977 Dec 23; 36(3-4):597-610. PubMed ID: 339640 [Abstract] [Full Text] [Related]
31. Magnitude of calcium influx required to induce dehydration of normal human red cells. Tiffert T, Spivak JL, Lew VL. Biochim Biophys Acta; 1988 Aug 18; 943(2):157-65. PubMed ID: 2456784 [Abstract] [Full Text] [Related]
32. Glutathione regeneration in calcium-loaded erythrocytes: a possible relationship among calcium accumulation, ATP decrement and oxidative damage. Kurata M, Suzuki M. Comp Biochem Physiol B Biochem Mol Biol; 1994 Aug 18; 109(2-3):305-12. PubMed ID: 7553347 [Abstract] [Full Text] [Related]
33. The influence of calcium ions and ionophore A23187 on microrheological characteristics of erythrocytes by new model ektacytometry. Chunyi W, Yanjun Z, Weibo K. Clin Hemorheol Microcirc; 2001 Aug 18; 24(1):19-23. PubMed ID: 11345230 [Abstract] [Full Text] [Related]
34. Evidence for a magnesium- and ATP-dependent calcium extrusion pump in dog erythrocytes. Brown AM. Biochim Biophys Acta; 1979 Jun 13; 554(1):195-203. PubMed ID: 378257 [Abstract] [Full Text] [Related]