These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 8310178

  • 1. The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations.
    Death A, Ferenci T.
    Res Microbiol; 1993 Sep; 144(7):529-37. PubMed ID: 8310178
    [Abstract] [Full Text] [Related]

  • 2. Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems.
    Steinsiek S, Bettenbrock K.
    J Bacteriol; 2012 Nov; 194(21):5897-908. PubMed ID: 22923596
    [Abstract] [Full Text] [Related]

  • 3. Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production.
    Fuentes LG, Lara AR, Martínez LM, Ramírez OT, Martínez A, Bolívar F, Gosset G.
    Microb Cell Fact; 2013 May 02; 12():42. PubMed ID: 23638701
    [Abstract] [Full Text] [Related]

  • 4. Mutational adaptation of Escherichia coli to glucose limitation involves distinct evolutionary pathways in aerobic and oxygen-limited environments.
    Manch K, Notley-McRobb L, Ferenci T.
    Genetics; 1999 Sep 02; 153(1):5-12. PubMed ID: 10471695
    [Abstract] [Full Text] [Related]

  • 5. Binding-protein-dependent sugar transport by Agrobacterium radiobacter and A. tumefaciens grown in continuous culture.
    Cornish A, Greenwood JA, Jones CW.
    J Gen Microbiol; 1989 Nov 02; 135(11):3001-13. PubMed ID: 2614377
    [Abstract] [Full Text] [Related]

  • 6. Mutational analysis of the enzyme IIIGlc of the phosphoenolpyruvate phosphotransferase system in Escherichia coli.
    Zeng GQ, De Reuse H, Danchin A.
    Res Microbiol; 1992 Nov 02; 143(3):251-61. PubMed ID: 1333089
    [Abstract] [Full Text] [Related]

  • 7. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL, Lambourne LT.
    Proc Biol Sci; 1992 Oct 22; 250(1327):51-5. PubMed ID: 1361062
    [Abstract] [Full Text] [Related]

  • 8. Uptake of galactose into Escherichia coli by facilitated diffusion.
    Kornberg HL, Riordan C.
    J Gen Microbiol; 1976 May 22; 94(1):75-89. PubMed ID: 778334
    [Abstract] [Full Text] [Related]

  • 9. The multifactorial influences of RpoS, Mlc and cAMP on ptsG expression under glucose-limited and anaerobic conditions.
    Seeto S, Notley-McRobb L, Ferenci T.
    Res Microbiol; 2004 Apr 22; 155(3):211-5. PubMed ID: 15059634
    [Abstract] [Full Text] [Related]

  • 10. Adaptation to life at micromolar nutrient levels: the regulation of Escherichia coli glucose transport by endoinduction and cAMP.
    Ferenci T.
    FEMS Microbiol Rev; 1996 Jul 22; 18(4):301-17. PubMed ID: 8703508
    [Abstract] [Full Text] [Related]

  • 11. Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations.
    Notley-McRobb L, Ferenci T.
    Environ Microbiol; 1999 Feb 22; 1(1):33-43. PubMed ID: 11207716
    [Abstract] [Full Text] [Related]

  • 12. Roles of individual mgl gene products in the beta-methylgalactoside transport system of Escherichia coli K12.
    Robbins AR, Guzman R, Rotman B.
    J Biol Chem; 1976 May 25; 251(10):3112-6. PubMed ID: 773938
    [Abstract] [Full Text] [Related]

  • 13. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays.
    Ajdić D, Pham VT.
    J Bacteriol; 2007 Jul 25; 189(14):5049-59. PubMed ID: 17496079
    [Abstract] [Full Text] [Related]

  • 14. Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates.
    Death A, Ferenci T.
    J Bacteriol; 1994 Aug 25; 176(16):5101-7. PubMed ID: 8051023
    [Abstract] [Full Text] [Related]

  • 15. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease.
    Flores N, Leal L, Sigala JC, de Anda R, Escalante A, Martínez A, Ramírez OT, Gosset G, Bolivar F.
    J Mol Microbiol Biotechnol; 2007 Aug 25; 13(1-3):105-16. PubMed ID: 17693718
    [Abstract] [Full Text] [Related]

  • 16. Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12.
    Robbins AR, Rotman B.
    Proc Natl Acad Sci U S A; 1975 Feb 25; 72(2):423-7. PubMed ID: 1091926
    [Abstract] [Full Text] [Related]

  • 17. Influence of growth environment on the phosphoenolpyruvate: glucose phosphotransferase activities of Escherichia coli and Klebsiella aerogenes: a comparative study.
    Neijssel OM, Hardy GP, Lansbergen JC, Tempest DW, O'Brien RW.
    Arch Microbiol; 1980 Mar 25; 125(1-2):175-9. PubMed ID: 6992732
    [Abstract] [Full Text] [Related]

  • 18. Role of the phosphotransferase system in Escherichia coli strains deficient in hexose phosphate transport.
    Dumay V, Crasnier M.
    FEMS Microbiol Lett; 1994 Feb 15; 116(2):209-14. PubMed ID: 8150265
    [Abstract] [Full Text] [Related]

  • 19. Involvement of the central loop of the lactose permease of Escherichia coli in its allosteric regulation by the glucose-specific enzyme IIA of the phosphoenolpyruvate-dependent phosphotransferase system.
    Hoischen C, Levin J, Pitaknarongphorn S, Reizer J, Saier MH.
    J Bacteriol; 1996 Oct 15; 178(20):6082-6. PubMed ID: 8830713
    [Abstract] [Full Text] [Related]

  • 20. Effect of growth conditions on levels of components of the phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans and Streptococcus sobrinus grown in continuous culture.
    Vadeboncoeur C, Thibault L, Neron S, Halvorson H, Hamilton IR.
    J Bacteriol; 1987 Dec 15; 169(12):5686-91. PubMed ID: 3680174
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.