These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dopamine transporter transmembrane domain polar mutants: DeltaG and DeltaDeltaG values implicate regions important for transporter functions. Itokawa M, Lin Z, Cai NS, Wu C, Kitayama S, Wang JB, Uhl GR. Mol Pharmacol; 2000 Jun; 57(6):1093-103. PubMed ID: 10825379 [Abstract] [Full Text] [Related]
3. Importance of valine at position 152 for the substrate transport and 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane binding of dopamine transporter. Lee SH, Chang MY, Lee KH, Park BS, Lee YS, Chin HR, Lee YS. Mol Pharmacol; 2000 May; 57(5):883-9. PubMed ID: 10779370 [Abstract] [Full Text] [Related]
4. Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Kitayama S, Shimada S, Xu H, Markham L, Donovan DM, Uhl GR. Proc Natl Acad Sci U S A; 1992 Aug 15; 89(16):7782-5. PubMed ID: 1502198 [Abstract] [Full Text] [Related]
5. The region of dopamine transporter encompassing the 3rd transmembrane domain is crucial for function. Lee SH, Kang SS, Son H, Lee YS. Biochem Biophys Res Commun; 1998 May 19; 246(2):347-52. PubMed ID: 9610361 [Abstract] [Full Text] [Related]
6. Catecholamine transporters and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity: studies comparing the cloned human noradrenaline and human dopamine transporter. Pifl C, Hornykiewicz O, Giros B, Caron MG. J Pharmacol Exp Ther; 1996 Jun 19; 277(3):1437-43. PubMed ID: 8667208 [Abstract] [Full Text] [Related]
7. Regulation of dopamine and MPP+ transport by catecholamine transporters. Dohi T, Kitayama S, Morioka N, Kumagai K, Mitsuhata C, Morita K, Kozai K, Lin Z, Uhl GR. Nihon Shinkei Seishin Yakurigaku Zasshi; 2004 Apr 19; 24(2):43-7. PubMed ID: 15164608 [Abstract] [Full Text] [Related]
8. Protein kinase-mediated bidirectional trafficking and functional regulation of the human dopamine transporter. Pristupa ZB, McConkey F, Liu F, Man HY, Lee FJ, Wang YT, Niznik HB. Synapse; 1998 Sep 19; 30(1):79-87. PubMed ID: 9704884 [Abstract] [Full Text] [Related]
9. Dopamine transporter-mediated cytotoxicity of beta-carbolinium derivatives related to Parkinson's disease: relationship to transporter-dependent uptake. Storch A, Hwang YI, Gearhart DA, Beach JW, Neafsey EJ, Collins MA, Schwarz J. J Neurochem; 2004 May 19; 89(3):685-94. PubMed ID: 15086525 [Abstract] [Full Text] [Related]
10. Parkinsonism-inducing neurotoxin MPP+: uptake and toxicity in nonneuronal COS cells expressing dopamine transporter cDNA. Kitayama S, Shimada S, Uhl GR. Ann Neurol; 1992 Jul 19; 32(1):109-11. PubMed ID: 1642464 [Abstract] [Full Text] [Related]
11. Recognition of benztropine by the dopamine transporter (DAT) differs from that of the classical dopamine uptake inhibitors cocaine, methylphenidate, and mazindol as a function of a DAT transmembrane 1 aspartic acid residue. Ukairo OT, Bondi CD, Newman AH, Kulkarni SS, Kozikowski AP, Pan S, Surratt CK. J Pharmacol Exp Ther; 2005 Aug 19; 314(2):575-83. PubMed ID: 15879005 [Abstract] [Full Text] [Related]
12. Dissociation of high-affinity cocaine analog binding and dopamine uptake inhibition at the dopamine transporter. Wang W, Sonders MS, Ukairo OT, Scott H, Kloetzel MK, Surratt CK. Mol Pharmacol; 2003 Aug 19; 64(2):430-9. PubMed ID: 12869648 [Abstract] [Full Text] [Related]
15. Dopamine transporter function assessed by antisense knockdown in the rat: protection from dopamine neurotoxicity. Van Kampen JM, McGeer EG, Stoessl AJ. Synapse; 2000 Sep 01; 37(3):171-8. PubMed ID: 10881039 [Abstract] [Full Text] [Related]