These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
751 related items for PubMed ID: 8313995
1. Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis. Parys JB, McPherson SM, Mathews L, Campbell KP, Longo FJ. Dev Biol; 1994 Feb; 161(2):466-76. PubMed ID: 8313995 [Abstract] [Full Text] [Related]
4. Developmental changes in the distribution of the endoplasmic reticulum and inositol 1,4,5-trisphosphate receptors and the spatial pattern of Ca2+ release during maturation of hamster oocytes. Shiraishi K, Okada A, Shirakawa H, Nakanishi S, Mikoshiba K, Miyazaki S. Dev Biol; 1995 Aug; 170(2):594-606. PubMed ID: 7649386 [Abstract] [Full Text] [Related]
9. The inositol trisphosphate receptor of Xenopus oocytes. Parys JB, Bezprozvanny I. Cell Calcium; 1995 Nov 15; 18(5):353-63. PubMed ID: 8581964 [Abstract] [Full Text] [Related]
10. Calcium release at fertilization of Xenopus eggs requires type I IP(3) receptors, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta. Runft LL, Watras J, Jaffe LA. Dev Biol; 1999 Oct 15; 214(2):399-411. PubMed ID: 10525343 [Abstract] [Full Text] [Related]
11. Regulation by Ca2+ and inositol 1,4,5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca2+ activation uniquely distinguishes types 1 and 3 insp3 receptors. Mak DO, McBride S, Foskett JK. J Gen Physiol; 2001 May 15; 117(5):435-46. PubMed ID: 11331354 [Abstract] [Full Text] [Related]
13. Development of calcium releasing activity induced by inositol trisphosphate and cyclic ADP-ribose during in vitro maturation of sea urchin oocytes. Miyata K, Nakano T, Kuroda R, Kuroda H. Dev Growth Differ; 2006 Dec 15; 48(9):605-13. PubMed ID: 17118015 [Abstract] [Full Text] [Related]
14. Redistribution and increase in cortical inositol 1,4,5-trisphosphate receptors after meiotic maturation of the mouse oocyte. Mehlmann LM, Mikoshiba K, Kline D. Dev Biol; 1996 Dec 15; 180(2):489-98. PubMed ID: 8954721 [Abstract] [Full Text] [Related]
15. Sea urchin egg 100-kDa dynamin-related protein: identification of and localization to intracellular vesicles. Faire K, Bonder EM. Dev Biol; 1993 Oct 15; 159(2):581-94. PubMed ID: 8405681 [Abstract] [Full Text] [Related]
16. Differential distribution of calcium stores in paramecium cells. Occurrence of a subplasmalemmal store with a calsequestrin-like protein. Plattner H, Habermann A, Kissmehl R, Klauke N, Majoul I, Söling HD. Eur J Cell Biol; 1997 Apr 15; 72(4):297-306. PubMed ID: 9127729 [Abstract] [Full Text] [Related]
17. The calcium transient in sea urchin eggs during fertilization requires the production of inositol 1,4,5-trisphosphate. Lee SJ, Shen SS. Dev Biol; 1998 Jan 15; 193(2):195-208. PubMed ID: 9473324 [Abstract] [Full Text] [Related]
18. Rat basophilic leukemia cells as model system for inositol 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection. Parys JB, de Smedt H, Missiaen L, Bootman MD, Sienaert I, Casteels R. Cell Calcium; 1995 Apr 15; 17(4):239-49. PubMed ID: 7664312 [Abstract] [Full Text] [Related]
19. A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo. Henson JH, Begg DA, Beaulieu SM, Fishkind DJ, Bonder EM, Terasaki M, Lebeche D, Kaminer B. J Cell Biol; 1989 Jul 15; 109(1):149-61. PubMed ID: 2663877 [Abstract] [Full Text] [Related]
20. Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis. Kume S, Yamamoto A, Inoue T, Muto A, Okano H, Mikoshiba K. Dev Biol; 1997 Feb 15; 182(2):228-39. PubMed ID: 9070324 [Abstract] [Full Text] [Related] Page: [Next] [New Search]