These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


284 related items for PubMed ID: 8316303

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system.
    Astuya A, Caprile T, Castro M, Salazar K, García Mde L, Reinicke K, Rodríguez F, Vera JC, Millán C, Ulloa V, Low M, Martínez F, Nualart F.
    J Neurosci Res; ; 79(1-2):146-56. PubMed ID: 15578707
    [Abstract] [Full Text] [Related]

  • 4. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C.
    Agus DB, Vera JC, Golde DW.
    Cancer Res; 1999 Sep 15; 59(18):4555-8. PubMed ID: 10493506
    [Abstract] [Full Text] [Related]

  • 5. Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C.
    Angulo C, Rauch MC, Droppelmann A, Reyes AM, Slebe JC, Delgado-López F, Guaiquil VH, Vera JC, Concha II.
    J Cell Biochem; 1998 Nov 01; 71(2):189-203. PubMed ID: 9779818
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Selective inhibition by ethanol of the type 1 facilitative glucose transporter (GLUT1).
    Krauss SW, Diamond I, Gordon AS.
    Mol Pharmacol; 1994 Jun 01; 45(6):1281-6. PubMed ID: 8022421
    [Abstract] [Full Text] [Related]

  • 8. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity.
    Arbuckle MI, Kane S, Porter LM, Seatter MJ, Gould GW.
    Biochemistry; 1996 Dec 24; 35(51):16519-27. PubMed ID: 8987985
    [Abstract] [Full Text] [Related]

  • 9. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid.
    Vera JC, Rivas CI, Zhang RH, Farber CM, Golde DW.
    Blood; 1994 Sep 01; 84(5):1628-34. PubMed ID: 8068952
    [Abstract] [Full Text] [Related]

  • 10. Studies with low micromolar levels of ascorbic and dehydroascorbic acid fail to unravel a preferential route for vitamin C uptake and accumulation in U937 cells.
    Azzolini C, Fiorani M, Guidarelli A, Cantoni O.
    Br J Nutr; 2012 Mar 01; 107(5):691-6. PubMed ID: 21794197
    [Abstract] [Full Text] [Related]

  • 11. The glucose transporter-2 (GLUT2) is a low affinity dehydroascorbic acid transporter.
    Mardones L, Ormazabal V, Romo X, Jaña C, Binder P, Peña E, Vergara M, Zúñiga FA.
    Biochem Biophys Res Commun; 2011 Jun 24; 410(1):7-12. PubMed ID: 21621509
    [Abstract] [Full Text] [Related]

  • 12. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways.
    Corpe CP, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, Levine M.
    J Biol Chem; 2005 Feb 18; 280(7):5211-20. PubMed ID: 15590689
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Molecular identification and functional characterization of the vitamin C transporters expressed by Sertoli cells.
    Angulo C, Castro MA, Rivas CI, Segretain D, Maldonado R, Yañez AJ, Slebe JC, Vera JC, Concha II.
    J Cell Physiol; 2008 Dec 18; 217(3):708-16. PubMed ID: 18668520
    [Abstract] [Full Text] [Related]

  • 15. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL).
    Hosoya K, Nakamura G, Akanuma S, Tomi M, Tachikawa M.
    Neurochem Int; 2008 Jun 18; 52(7):1351-7. PubMed ID: 18353508
    [Abstract] [Full Text] [Related]

  • 16. Erythroid glucose transporters.
    Montel-Hagen A, Sitbon M, Taylor N.
    Curr Opin Hematol; 2009 May 18; 16(3):165-72. PubMed ID: 19346941
    [Abstract] [Full Text] [Related]

  • 17. A family of mammalian Na+-dependent L-ascorbic acid transporters.
    Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA.
    Nature; 1999 May 06; 399(6731):70-5. PubMed ID: 10331392
    [Abstract] [Full Text] [Related]

  • 18. Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells.
    Maulén NP, Henríquez EA, Kempe S, Cárcamo JG, Schmid-Kotsas A, Bachem M, Grünert A, Bustamante ME, Nualart F, Vera JC.
    J Biol Chem; 2003 Mar 14; 278(11):9035-41. PubMed ID: 12381735
    [Abstract] [Full Text] [Related]

  • 19. Characterization of glucose transport and glucose transporters in the human choriocarcinoma cell line, BeWo.
    Shah SW, Zhao H, Low SY, Mcardle HJ, Hundal HS.
    Placenta; 1999 Nov 14; 20(8):651-9. PubMed ID: 10527819
    [Abstract] [Full Text] [Related]

  • 20. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine.
    Li Q, Manolescu A, Ritzel M, Yao S, Slugoski M, Young JD, Chen XZ, Cheeseman CI.
    Am J Physiol Gastrointest Liver Physiol; 2004 Jul 14; 287(1):G236-42. PubMed ID: 15033637
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.