These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 8318232

  • 1. Maturation of major Drosophila rhodopsin, ninaE, requires chromophore 3-hydroxyretinal.
    Ozaki K, Nagatani H, Ozaki M, Tokunaga F.
    Neuron; 1993 Jun; 10(6):1113-9. PubMed ID: 8318232
    [Abstract] [Full Text] [Related]

  • 2. Opsin maturation and targeting to rhabdomeral photoreceptor membranes requires the retinal chromophore.
    Huber A, Wolfrum U, Paulsen R.
    Eur J Cell Biol; 1994 Apr; 63(2):219-29. PubMed ID: 8082646
    [Abstract] [Full Text] [Related]

  • 3. Chromophore-Independent Roles of Opsin Apoproteins in Drosophila Mechanoreceptors.
    Katana R, Guan C, Zanini D, Larsen ME, Giraldo D, Geurten BRH, Schmidt CF, Britt SG, Göpfert MC.
    Curr Biol; 2019 Sep 09; 29(17):2961-2969.e4. PubMed ID: 31447373
    [Abstract] [Full Text] [Related]

  • 4. Biogenesis of blowfly photoreceptor membranes is regulated by 11-cis-retinal.
    Paulsen R, Schwemer J.
    Eur J Biochem; 1983 Dec 15; 137(3):609-14. PubMed ID: 6229403
    [Abstract] [Full Text] [Related]

  • 5. Functional expression of bovine opsin in the methylotrophic yeast Pichia pastoris.
    Abdulaev NG, Popp MP, Smith WC, Ridge KD.
    Protein Expr Purif; 1997 Jun 15; 10(1):61-9. PubMed ID: 9179292
    [Abstract] [Full Text] [Related]

  • 6. Site-directed mutagenesis of highly conserved amino acids in the first cytoplasmic loop of Drosophila Rh1 opsin blocks rhodopsin synthesis in the nascent state.
    Bentrop J, Schwab K, Pak WL, Paulsen R.
    EMBO J; 1997 Apr 01; 16(7):1600-9. PubMed ID: 9130705
    [Abstract] [Full Text] [Related]

  • 7. Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines.
    Reeves PJ, Thurmond RL, Khorana HG.
    Proc Natl Acad Sci U S A; 1996 Oct 15; 93(21):11487-92. PubMed ID: 8876162
    [Abstract] [Full Text] [Related]

  • 8. Control of Drosophila opsin gene expression by carotenoids and retinoic acid: northern and western analyses.
    Picking WL, Chen DM, Lee RD, Vogt ME, Polizzi JL, Marietta RG, Stark WS.
    Exp Eye Res; 1996 Nov 15; 63(5):493-500. PubMed ID: 8994352
    [Abstract] [Full Text] [Related]

  • 9. The absorbance spectrum and photosensitivity of a new synthetic "visual pigment" based on 4-hydroxyretinal.
    Kito Y, Partridge JC, Seidou M, Narita K, Hamanaka T, Michinomae M, Sekiya N, Yoshihara K.
    Vision Res; 1992 Jan 15; 32(1):3-10. PubMed ID: 1386953
    [Abstract] [Full Text] [Related]

  • 10. The Drosophila ninaG oxidoreductase acts in visual pigment chromophore production.
    Sarfare S, Ahmad ST, Joyce MV, Boggess B, O'Tousa JE.
    J Biol Chem; 2005 Mar 25; 280(12):11895-901. PubMed ID: 15640158
    [Abstract] [Full Text] [Related]

  • 11. Characterization of the primary photointermediates of Drosophila rhodopsin.
    Vought BW, Salcedo E, Chadwell LV, Britt SG, Birge RR, Knox BE.
    Biochemistry; 2000 Nov 21; 39(46):14128-37. PubMed ID: 11087361
    [Abstract] [Full Text] [Related]

  • 12. Heterologous expression of bovine rhodopsin in Drosophila photoreceptor cells.
    Ahmad ST, Natochin M, Barren B, Artemyev NO, O'Tousa JE.
    Invest Ophthalmol Vis Sci; 2006 Sep 21; 47(9):3722-8. PubMed ID: 16936079
    [Abstract] [Full Text] [Related]

  • 13. Dependency on light and vitamin A derivatives of the biogenesis of 3-hydroxyretinal and visual pigment in the compound eyes of Drosophila melanogaster.
    Isono K, Tanimura T, Oda Y, Tsukahara Y.
    J Gen Physiol; 1988 Nov 21; 92(5):587-600. PubMed ID: 3148683
    [Abstract] [Full Text] [Related]

  • 14. Photoreceptor recovery in retinoid-deprived rats after vitamin A replenishment.
    Katz ML, Chen DM, Stientjes HJ, Stark WS.
    Exp Eye Res; 1993 Jun 21; 56(6):671-82. PubMed ID: 8595809
    [Abstract] [Full Text] [Related]

  • 15. Physiological studies of the interaction between opsin and chromophore in rod and cone visual pigments.
    Kefalov VJ, Cornwall MC, Fain GL.
    Methods Mol Biol; 2010 Jun 21; 652():95-114. PubMed ID: 20552424
    [Abstract] [Full Text] [Related]

  • 16. Comparative study on the chromophore binding sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogues.
    Fukada Y, Okano T, Shichida Y, Yoshizawa T, Trehan A, Mead D, Denny M, Asato AE, Liu RS.
    Biochemistry; 1990 Mar 27; 29(12):3133-40. PubMed ID: 2140051
    [Abstract] [Full Text] [Related]

  • 17. Competition between retinal and 3-dehydroretinal for opsin in the regeneration of visual pigment.
    Suzuki T, Makino-Tasaka M, Miyata S.
    Vision Res; 1985 Mar 27; 25(2):149-54. PubMed ID: 3160161
    [Abstract] [Full Text] [Related]

  • 18. Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal.
    Han M, Groesbeek M, Smith SO, Sakmar TP.
    Biochemistry; 1998 Jan 13; 37(2):538-45. PubMed ID: 9425074
    [Abstract] [Full Text] [Related]

  • 19. Carotenoid replacement therapy in Drosophila: recovery of membrane, opsin and visual pigment.
    Sapp RJ, Christianson JS, Maier L, Studer K, Stark WS.
    Exp Eye Res; 1991 Jul 13; 53(1):73-9. PubMed ID: 1831766
    [Abstract] [Full Text] [Related]

  • 20. In vitro expression of bovine opsin using recombinant baculovirus: the role of glutamic acid (134) in opsin biosynthesis and glycosylation.
    Jansen JJ, Mulder WR, De Caluwé GL, Vlak JM, De Grip WJ.
    Biochim Biophys Acta; 1991 May 02; 1089(1):68-76. PubMed ID: 1673866
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.