These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates. Liu Y, El Masoudi A, Pronk JT, van Gulik WM. Appl Environ Microbiol; 2019 Oct 15; 85(20):. PubMed ID: 31375494 [Abstract] [Full Text] [Related]
3. Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae. Aon JC, Cortassa S. Metab Eng; 2001 Jul 15; 3(3):250-64. PubMed ID: 11461147 [Abstract] [Full Text] [Related]
4. Energetics and product formation by Saccharomyces cerevisiae grown in anaerobic chemostats under nitrogen limitation. Lidén G, Persson A, Gustafsson L, Niklasson C. Appl Microbiol Biotechnol; 1995 Nov 15; 43(6):1034-8. PubMed ID: 8590653 [Abstract] [Full Text] [Related]
5. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Postma E, Verduyn C, Scheffers WA, Van Dijken JP. Appl Environ Microbiol; 1989 Feb 15; 55(2):468-77. PubMed ID: 2566299 [Abstract] [Full Text] [Related]
6. Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae. Lis AV, Schneider K, Weber J, Keasling JD, Jensen MK, Klein T. Microb Cell Fact; 2019 Mar 11; 18(1):50. PubMed ID: 30857529 [Abstract] [Full Text] [Related]
7. [Limiting the growth of Saccharomyces serevisiae yeasts under chemostat conditions by carbon and nitrogen sources]. Shkidchenko AN. Mikrobiologiia; 1984 Mar 11; 53(1):58-62. PubMed ID: 6369084 [Abstract] [Full Text] [Related]
8. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. Larsson C, Nilsson A, Blomberg A, Gustafsson L. J Bacteriol; 1997 Dec 11; 179(23):7243-50. PubMed ID: 9393686 [Abstract] [Full Text] [Related]
9. Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation. Basso TO, Dario MG, Tonso A, Stambuk BU, Gombert AK. Biotechnol Lett; 2010 Jul 11; 32(7):973-7. PubMed ID: 20349336 [Abstract] [Full Text] [Related]
10. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Verduyn C, Postma E, Scheffers WA, Van Dijken JP. Yeast; 1992 Jul 11; 8(7):501-17. PubMed ID: 1523884 [Abstract] [Full Text] [Related]
11. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. Fonseca GG, Gombert AK, Heinzle E, Wittmann C. FEMS Yeast Res; 2007 May 11; 7(3):422-35. PubMed ID: 17233766 [Abstract] [Full Text] [Related]
12. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae. Thierie J. J Theor Biol; 2004 Feb 21; 226(4):483-501. PubMed ID: 14759654 [Abstract] [Full Text] [Related]
13. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. van Maris AJ, Bakker BM, Brandt M, Boorsma A, Teixeira de Mattos MJ, Grivell LA, Pronk JT, Blom J. FEMS Yeast Res; 2001 Jul 21; 1(2):139-49. PubMed ID: 12702359 [Abstract] [Full Text] [Related]
19. Further evidence for the existence of a bottleneck in the metabolism of Saccharomyces cerevisiae. Auberson LC, Ramseier CV, Marison IW, von Stockar U. Experientia; 1989 Dec 01; 45(11-12):1013-8. PubMed ID: 2513218 [Abstract] [Full Text] [Related]