These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 8344284
1. Equilibrium and transient kinetic studies of the binding of cytochalasin B to the L-arabinose-H+ symport protein of Escherichia coli. Determination of the sugar binding specificity of the L-arabinose-H+ symporter. Walmsley AR, Petro KR, Henderson PJ. Eur J Biochem; 1993 Jul 01; 215(1):43-54. PubMed ID: 8344284 [Abstract] [Full Text] [Related]
2. Asparagine 394 in putative helix 11 of the galactose-H+ symport protein (GalP) from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar. McDonald TP, Walmsley AR, Henderson PJ. J Biol Chem; 1997 Jun 13; 272(24):15189-99. PubMed ID: 9182541 [Abstract] [Full Text] [Related]
3. Kinetics and thermodynamics of the binding of forskolin to the galactose-H+ transport protein, GalP, of Escherichia coli. Martin GE, Rutherford NG, Henderson PJ, Walmsley AR. Biochem J; 1995 May 15; 308 ( Pt 1)(Pt 1):261-8. PubMed ID: 7755573 [Abstract] [Full Text] [Related]
4. The kinetics and thermodynamics of the binding of cytochalasin B to sugar transporters. Walmsley AR, Lowe AG, Henderson PJ. Eur J Biochem; 1994 Apr 01; 221(1):513-22. PubMed ID: 8168538 [Abstract] [Full Text] [Related]
5. The role of tryptophans 371 and 395 in the binding of antibiotics and the transport of sugars by the D-galactose-H+ symport protein (GalP) from Escherichia coli. McDonald TP, Walmsley AR, Martin GE, Henderson PJ. J Biol Chem; 1995 Dec 22; 270(51):30359-70. PubMed ID: 8530461 [Abstract] [Full Text] [Related]
6. Cytochalasin B as a probe of protein structure and substrate recognition by the galactose/H+ transporter of Escherichia coli. Cairns MT, McDonald TP, Horne P, Henderson PJ, Baldwin SA. J Biol Chem; 1991 May 05; 266(13):8176-83. PubMed ID: 1850739 [Abstract] [Full Text] [Related]
7. Proton-linked L-rhamnose transport, and its comparison with L-fucose transport in Enterobacteriaceae. Muiry JA, Gunn TC, McDonald TP, Bradley SA, Tate CG, Henderson PJ. Biochem J; 1993 Mar 15; 290 ( Pt 3)(Pt 3):833-42. PubMed ID: 8384447 [Abstract] [Full Text] [Related]
8. Thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli. Fukada H, Sturtevant JM, Quiocho FA. J Biol Chem; 1983 Nov 10; 258(21):13193-8. PubMed ID: 6355105 [Abstract] [Full Text] [Related]
9. Proton nuclear magnetic resonance spectroscopy and ligand binding dynamics of the Escherichia coli L-arabinose binding protein. Clark AF, Gerken TA, Hogg RW. Biochemistry; 1982 Apr 27; 21(9):2227-33. PubMed ID: 7046797 [Abstract] [Full Text] [Related]
10. Forskolin specifically inhibits the bacterial galactose-H+ transport protein, GalP. Martin GE, Seamon KB, Brown FM, Shanahan MF, Roberts PE, Henderson PJ. J Biol Chem; 1994 Oct 07; 269(40):24870-7. PubMed ID: 7929167 [Abstract] [Full Text] [Related]
11. A Pro to Gly mutation in the hinge of the arabinose-binding protein enhances binding and alters specificity. Sugar-binding and crystallographic studies. Vermersch PS, Tesmer JJ, Lemon DD, Quiocho FA. J Biol Chem; 1990 Sep 25; 265(27):16592-603. PubMed ID: 2204627 [Abstract] [Full Text] [Related]
12. Dissection of discrete kinetic events in the binding of antibiotics and substrates to the galactose-H+ symport protein, GalP, of Escherichia coli. Henderson PJ, Martin GE, McDonald TP, Steel A, Walmsley AR. Antonie Van Leeuwenhoek; 1994 Sep 25; 65(4):349-58. PubMed ID: 7832591 [Abstract] [Full Text] [Related]
13. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. Henderson PJ, Maiden MC. Philos Trans R Soc Lond B Biol Sci; 1990 Jan 30; 326(1236):391-410. PubMed ID: 1970645 [Abstract] [Full Text] [Related]
14. 8-Anilino-1-naphthalenesulfonate is a fluorescent probe of conformational changes in the D-galactose-H+ symport protein of Escherichia coli. Walmsley AR, Martin GE, Henderson PJ. J Biol Chem; 1994 Jun 24; 269(25):17009-19. PubMed ID: 8006005 [Abstract] [Full Text] [Related]
15. Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis. Miller DM, Olson JS, Pflugrath JW, Quiocho FA. J Biol Chem; 1983 Nov 25; 258(22):13665-72. PubMed ID: 6358208 [Abstract] [Full Text] [Related]
16. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Daruwalla KR, Paxton AT, Henderson PJ. Biochem J; 1981 Dec 15; 200(3):611-27. PubMed ID: 6282256 [Abstract] [Full Text] [Related]
17. Proton-linked L-fucose transport in Escherichia coli. Bradley SA, Tinsley CR, Muiry JA, Henderson PJ. Biochem J; 1987 Dec 01; 248(2):495-500. PubMed ID: 2829831 [Abstract] [Full Text] [Related]
18. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites. Klip A, Logan WJ, Li G. Biochim Biophys Acta; 1982 May 07; 687(2):265-80. PubMed ID: 7093257 [Abstract] [Full Text] [Related]
19. Computer modelling approach to study the modes of binding of alpha- and beta-anomers of D-galactose, D-fucose and D-glucose to L-arabinose-binding protein. Mukhopadhyay C, Rao VS. Int J Biol Macromol; 1989 Aug 07; 11(4):194-200. PubMed ID: 2489081 [Abstract] [Full Text] [Related]
20. Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli. Koirala S, Wang X, Rao CV. J Bacteriol; 2016 Feb 01; 198(3):386-93. PubMed ID: 26527647 [Abstract] [Full Text] [Related] Page: [Next] [New Search]