These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Endoderm development in vertebrates: fate mapping, induction and regional specification. Fukuda K, Kikuchi Y. Dev Growth Differ; 2005 Aug; 47(6):343-55. PubMed ID: 16109032 [Abstract] [Full Text] [Related]
4. Regional identity is established before gastrulation in the Xenopus embryo. Turner A, Snape AM, Wylie CC, Heasman J. J Exp Zool; 1989 Aug; 251(2):245-52. PubMed ID: 2769203 [Abstract] [Full Text] [Related]
5. Endoderm specification and differentiation in Xenopus embryos. Horb ME, Slack JM. Dev Biol; 2001 Aug 15; 236(2):330-43. PubMed ID: 11476575 [Abstract] [Full Text] [Related]
6. Changes in states of commitment of single animal pole blastomeres of Xenopus laevis. Snape A, Wylie CC, Smith JC, Heasman J. Dev Biol; 1987 Feb 15; 119(2):503-10. PubMed ID: 3803715 [Abstract] [Full Text] [Related]
7. Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm. Essex LJ, Mayor R, Sargent MG. Dev Dyn; 1993 Oct 15; 198(2):108-22. PubMed ID: 8305705 [Abstract] [Full Text] [Related]
8. Induction of neuronal differentiation by planar signals in Xenopus embryos. Sater AK, Steinhardt RA, Keller R. Dev Dyn; 1993 Aug 15; 197(4):268-80. PubMed ID: 8292824 [Abstract] [Full Text] [Related]
9. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives. Grunz H. Int J Dev Biol; 1994 Mar 15; 38(1):69-76. PubMed ID: 8074997 [Abstract] [Full Text] [Related]
10. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm. Kikkawa M, Yamazaki M, Izutsu Y, Maéno M. Int J Dev Biol; 2001 Apr 15; 45(2):387-96. PubMed ID: 11330858 [Abstract] [Full Text] [Related]
11. Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. II. Sequential cell recruitment, and control of the cell cycle, during mesoderm formation. Cooke J. J Embryol Exp Morphol; 1979 Oct 15; 53():269-89. PubMed ID: 536690 [Abstract] [Full Text] [Related]
12. Dorsalization and neural induction: properties of the organizer in Xenopus laevis. Smith JC, Slack JM. J Embryol Exp Morphol; 1983 Dec 15; 78():299-317. PubMed ID: 6663230 [Abstract] [Full Text] [Related]
13. Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage. Cooke J, Webber JA. J Embryol Exp Morphol; 1985 Aug 15; 88():85-112. PubMed ID: 4078542 [Abstract] [Full Text] [Related]
14. Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Moody SA, Kline MJ. Anat Embryol (Berl); 1990 Aug 15; 182(4):347-62. PubMed ID: 2252221 [Abstract] [Full Text] [Related]
15. Mesendoderm cell and archenteron formation in isolated blastomeres from the shrimp Sicyonia ingentis. Hertzler PL, Wang SW, Clark WH. Dev Biol; 1994 Aug 15; 164(2):333-44. PubMed ID: 8045337 [Abstract] [Full Text] [Related]
16. Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos. Bonstein L, Elias S, Frank D. Dev Biol; 1998 Jan 15; 193(2):156-68. PubMed ID: 9473321 [Abstract] [Full Text] [Related]
17. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo. Ransick A, Davidson EH. Dev Biol; 1998 Mar 01; 195(1):38-48. PubMed ID: 9520322 [Abstract] [Full Text] [Related]
18. Suppression of muscle fate by cellular interaction is required for mesenchyme formation during ascidian embryogenesis. Kim GJ, Nishida H. Dev Biol; 1999 Oct 01; 214(1):9-22. PubMed ID: 10491253 [Abstract] [Full Text] [Related]
19. Cytoplasmic localization and chordamesoderm induction in the frog embryo. Gimlich RL. J Embryol Exp Morphol; 1985 Nov 01; 89 Suppl():89-111. PubMed ID: 3831222 [Abstract] [Full Text] [Related]
20. Elucidating the origins of the vascular system: a fate map of the vascular endothelial and red blood cell lineages in Xenopus laevis. Mills KR, Kruep D, Saha MS. Dev Biol; 1999 May 15; 209(2):352-68. PubMed ID: 10328926 [Abstract] [Full Text] [Related] Page: [Next] [New Search]