These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


232 related items for PubMed ID: 8346496

  • 1. Use of a combined oxygen and carbon dioxide transcutaneous electrode in the estimation of gas exchange during exercise.
    Sridhar MK, Carter R, Moran F, Banham SW.
    Thorax; 1993 Jun; 48(6):643-7. PubMed ID: 8346496
    [Abstract] [Full Text] [Related]

  • 2. Use of transcutaneous oxygen and carbon dioxide tensions for assessing indices of gas exchange during exercise testing.
    Carter R, Banham SW.
    Respir Med; 2000 Apr; 94(4):350-5. PubMed ID: 10845433
    [Abstract] [Full Text] [Related]

  • 3. Comparison of exercise cardiac output by the Fick principle using oxygen and carbon dioxide.
    Sun XG, Hansen JE, Ting H, Chuang ML, Stringer WW, Adame D, Wasserman K.
    Chest; 2000 Sep; 118(3):631-40. PubMed ID: 10988183
    [Abstract] [Full Text] [Related]

  • 4. Effects of the electrode temperature of a new monitor, TCM4, on the measurement of transcutaneous oxygen and carbon dioxide tension.
    Nishiyama T, Nakamura S, Yamashita K.
    J Anesth; 2006 Sep; 20(4):331-4. PubMed ID: 17072703
    [Abstract] [Full Text] [Related]

  • 5. Changes in arterial and transcutaneous oxygen and carbon dioxide tensions during and after voluntary hyperventilation.
    Steurer J, Hoffmann U, Dür P, Russi E, Vetter W.
    Respiration; 1997 Sep; 64(3):200-5. PubMed ID: 9154671
    [Abstract] [Full Text] [Related]

  • 6. Transition from exercise to rest. Ventilatory and arterial blood gas responses.
    O'Neill AV, Johnson DC.
    Chest; 1991 May; 99(5):1145-50. PubMed ID: 1902160
    [Abstract] [Full Text] [Related]

  • 7. Influence of smoking and obesity on alveolar-arterial gas pressure differences and dead space ventilation at rest and peak exercise in healthy men and women.
    Gläser S, Ittermann T, Koch B, Schäper C, Felix SB, Völzke H, Könemann R, Ewert R, Hansen JE.
    Respir Med; 2013 Jun; 107(6):919-26. PubMed ID: 23510666
    [Abstract] [Full Text] [Related]

  • 8. Validity of transcutaneous oxygen/carbon dioxide pressure measurement in the monitoring of mechanical ventilation in stable chronic respiratory failure.
    Rosner V, Hannhart B, Chabot F, Polu JM.
    Eur Respir J; 1999 May; 13(5):1044-7. PubMed ID: 10414402
    [Abstract] [Full Text] [Related]

  • 9. Evaluation of a transcutaneous blood gas monitoring system in critically ill dogs.
    Holowaychuk MK, Fujita H, Bersenas AM.
    J Vet Emerg Crit Care (San Antonio); 2014 May; 24(5):545-53. PubMed ID: 25186166
    [Abstract] [Full Text] [Related]

  • 10. Transcutaneous carbon dioxide threshold during exercise.
    Abraham P, Carter D, Bickert S, Desvaux B, Saumet JL.
    J Sports Med Phys Fitness; 1999 Jun; 39(2):93-100. PubMed ID: 10399415
    [Abstract] [Full Text] [Related]

  • 11. Validation study of a transcutaneous carbon dioxide monitor in patients in the emergency department.
    McVicar J, Eager R.
    Emerg Med J; 2009 May; 26(5):344-6. PubMed ID: 19386868
    [Abstract] [Full Text] [Related]

  • 12. Effect of Transcutaneous Electrode Temperature on Accuracy and Precision of Carbon Dioxide and Oxygen Measurements in the Preterm Infants.
    Jakubowicz JF, Bai S, Matlock DN, Jones ML, Hu Z, Proffitt B, Courtney SE.
    Respir Care; 2018 Jul; 63(7):900-906. PubMed ID: 29717098
    [Abstract] [Full Text] [Related]

  • 13. Weaning mechanical ventilation after off-pump coronary artery bypass graft procedures directed by noninvasive gas measurements.
    Chakravarthy M, Narayan S, Govindarajan R, Jawali V, Rajeev S.
    J Cardiothorac Vasc Anesth; 2010 Jun; 24(3):451-5. PubMed ID: 19729321
    [Abstract] [Full Text] [Related]

  • 14. Use of a fast transcutaneous CO2 detector to evaluate escape hoods: the "CAPS 2000" with the inlet valves removed from the nose-cup as a test case.
    Arieli R, Arieli Y, Eynan M, Abramovich A.
    Mil Med; 2012 Nov; 177(11):1426-30. PubMed ID: 23198526
    [Abstract] [Full Text] [Related]

  • 15. Is transcutaneous PO2 monitoring during exercise a reliable alternative to arterial PO2 measurements?
    Brudin L, Berg S, Ekberg P, Castenfors J.
    Clin Physiol; 1994 Jan; 14(1):47-52. PubMed ID: 8149709
    [Abstract] [Full Text] [Related]

  • 16. Accuracy of transcutaneous carbon dioxide tension measurements during cardiopulmonary exercise testing.
    Stege G, van den Elshout FJ, Heijdra YF, van de Ven MJ, Dekhuijzen PN, Vos PJ.
    Respiration; 2009 Jan; 78(2):147-53. PubMed ID: 19088464
    [Abstract] [Full Text] [Related]

  • 17. Arterial blood gases during exercise: validity of transcutaneous measurements.
    Planès C, Leroy M, Foray E, Raffestin B.
    Arch Phys Med Rehabil; 2001 Dec; 82(12):1686-91. PubMed ID: 11733883
    [Abstract] [Full Text] [Related]

  • 18. Detection of disturbances in pulmonary gas exchanges during exercise from arterialized earlobe PO2.
    Aguilaniu B, Maitre J, Diab S, Perrault H, Péronnet F.
    Respir Physiol Neurobiol; 2011 Jun 30; 177(1):30-5. PubMed ID: 21397053
    [Abstract] [Full Text] [Related]

  • 19. [Invasive or transcutaneous measurements of oxygen saturation and blood gases? An evaluation of pulse oximetry and transcutaneous measurement of PO2 and PCO2 during rest and exercise].
    Stanghelle JK, Christensen CC, Haanaes OC.
    Tidsskr Nor Laegeforen; 1993 Mar 20; 113(8):967-70. PubMed ID: 8470079
    [Abstract] [Full Text] [Related]

  • 20. Prediction of arterial blood gases by transcutaneous O2 and CO2 in critically ill hyperdynamic trauma patients.
    Stokes CD, Blevins S, Siegel JH, Stoklosa JC, Cotter K, Goh KC, Goodarzi S, Belzberg H, Chiarla C.
    J Trauma; 1987 Nov 20; 27(11):1240-60. PubMed ID: 3682036
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.