These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
99 related items for PubMed ID: 8359208
1. Antiproliferative effect of esculetin on vascular smooth muscle cells: possible roles of signal transduction pathways. Huang HC, Lai MW, Wang HR, Chung YL, Hsieh LM, Chen CC. Eur J Pharmacol; 1993 Jun 11; 237(1):39-44. PubMed ID: 8359208 [Abstract] [Full Text] [Related]
2. Epigallocatechin suppression of proliferation of vascular smooth muscle cells: correlation with c-jun and JNK. Lu LH, Lee SS, Huang HC. Br J Pharmacol; 1998 Jul 11; 124(6):1227-37. PubMed ID: 9720795 [Abstract] [Full Text] [Related]
3. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Chen HW, Huang HC. Br J Pharmacol; 1998 Jul 11; 124(6):1029-40. PubMed ID: 9720770 [Abstract] [Full Text] [Related]
4. Involvement of cyclooxygenase- and lipoxygenase-mediated conversion of arachidonic acid in controlling human vascular smooth muscle cell proliferation. Brinkman HJ, van Buul-Wortelboer MF, van Mourik JA. Thromb Haemost; 1990 Apr 12; 63(2):291-7. PubMed ID: 2114045 [Abstract] [Full Text] [Related]
5. Effects of baicalein and esculetin on transduction signals and growth factors expression in T-lymphoid leukemia cells. Huang HC, Hsieh LM, Chen HW, Lin YS, Chen JS. Eur J Pharmacol; 1994 Jun 15; 268(1):73-8. PubMed ID: 7925613 [Abstract] [Full Text] [Related]
7. Antiproliferative effect of baicalein, a flavonoid from a Chinese herb, on vascular smooth muscle cell. Huang HC, Wang HR, Hsieh LM. Eur J Pharmacol; 1994 Jan 04; 251(1):91-3. PubMed ID: 8137874 [Abstract] [Full Text] [Related]
9. Role of the lipoxygenase pathway in phenylephrine-induced vascular smooth muscle cell proliferation and migration. Nishio E, Watanabe Y. Eur J Pharmacol; 1997 Oct 08; 336(2-3):267-73. PubMed ID: 9384242 [Abstract] [Full Text] [Related]
10. Vascular smooth muscle cells exhibit increased growth in response to elevated glucose. Natarajan R, Gonzales N, Xu L, Nadler JL. Biochem Biophys Res Commun; 1992 Aug 31; 187(1):552-60. PubMed ID: 1520346 [Abstract] [Full Text] [Related]
11. Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells. Rao GN, Baas AS, Glasgow WC, Eling TE, Runge MS, Alexander RW. J Biol Chem; 1994 Dec 23; 269(51):32586-91. PubMed ID: 7798262 [Abstract] [Full Text] [Related]
12. Inhibition of the formation of 5-hydroxy-6,8,11,14-eicosatetraenoic acid from arachidonic acid in polymorphonuclear leukocytes by various coumarins. Kimura Y, Okuda H, Arichi S, Baba K, Kozawa M. Biochim Biophys Acta; 1985 Apr 25; 834(2):224-9. PubMed ID: 3922420 [Abstract] [Full Text] [Related]
13. Vascular mode of action of kinin B1 receptors and development of a cellular model for the investigation of these receptors. Levesque L, Drapeau G, Grose JH, Rioux F, Marceau F. Br J Pharmacol; 1993 Aug 25; 109(4):1254-62. PubMed ID: 8104648 [Abstract] [Full Text] [Related]
14. The possible mechanisms of the antiproliferative effect of fullerenol, polyhydroxylated C60, on vascular smooth muscle cells. Lu LH, Lee YT, Chen HW, Chiang LY, Huang HC. Br J Pharmacol; 1998 Mar 25; 123(6):1097-102. PubMed ID: 9559892 [Abstract] [Full Text] [Related]
15. Metabolism of arachidonic acid in rabbit iris and retina. Preud'homme Y, Demolle D, Boeynaems JM. Invest Ophthalmol Vis Sci; 1985 Oct 25; 26(10):1336-42. PubMed ID: 3930417 [Abstract] [Full Text] [Related]
16. Formation of 6-oxoprostaglandin F1 alpha, 6,15-dioxoprostaglandin F1 alpha, and monohydroxyicosatetraenoic acids from arachidonic acid by fetal calf aorta and ductus arteriosus. Powell WS. J Biol Chem; 1982 Aug 25; 257(16):9457-63. PubMed ID: 6809737 [Abstract] [Full Text] [Related]
17. Antiproliferative activity of NQ304, a synthetic 1,4-naphthoquinone, is mediated via the suppressions of the PI3K/Akt and ERK1/2 signaling pathways in PDGF-BB-stimulated vascular smooth muscle cells. Kim TJ, Yun YP. Vascul Pharmacol; 2007 Jan 25; 46(1):43-51. PubMed ID: 16875883 [Abstract] [Full Text] [Related]
18. cGMP-elevating agents suppress proliferation of vascular smooth muscle cells by inhibiting the activation of epidermal growth factor signaling pathway. Yu SM, Hung LM, Lin CC. Circulation; 1997 Mar 04; 95(5):1269-77. PubMed ID: 9054859 [Abstract] [Full Text] [Related]
19. Inhibition of fetal calf serum-stimulated proliferation of rabbit cultured tracheal smooth muscle cells by selective inhibitors of protein kinase C and protein tyrosine kinase. Hirst SJ, Webb BL, Giembycz MA, Barnes PJ, Twort CH. Am J Respir Cell Mol Biol; 1995 Feb 04; 12(2):149-61. PubMed ID: 7865214 [Abstract] [Full Text] [Related]
20. Synergistic effect of urotensin II with mildly oxidized LDL on DNA synthesis in vascular smooth muscle cells. Watanabe T, Pakala R, Katagiri T, Benedict CR. Circulation; 2001 Jul 03; 104(1):16-8. PubMed ID: 11435331 [Abstract] [Full Text] [Related] Page: [Next] [New Search]