These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 8361395

  • 1. On-line measurement of microvascular diameter and red blood cell velocity by a line-scan CCD image sensor.
    Rosen B, Paffhausen W.
    Microvasc Res; 1993 Mar; 45(2):107-21. PubMed ID: 8361395
    [Abstract] [Full Text] [Related]

  • 2. CCD line-scan image sensor for the measurement of red cell velocity in microvessels.
    Goodman AH.
    J Biomed Eng; 1986 Oct; 8(4):329-33. PubMed ID: 2945051
    [Abstract] [Full Text] [Related]

  • 3. Fiber optical spatial filter anemometry--intravital measurement of red blood flow velocity (RBCV) in the microcirculation.
    Hungerer S, Nolte D, Elstner B, Pröhl M, Messmer K.
    Artif Cells Blood Substit Immobil Biotechnol; 2010 May; 38(3):119-28. PubMed ID: 20297922
    [Abstract] [Full Text] [Related]

  • 4. Measurement of RBC velocities in the rat pial arteries with an image-intensified high-speed video camera system.
    Ishikawa M, Sekizuka E, Shimizu K, Yamaguchi N, Kawase T.
    Microvasc Res; 1998 Nov; 56(3):166-72. PubMed ID: 9828154
    [Abstract] [Full Text] [Related]

  • 5. Effects of intracranial pressure on the pial microcirculation in rats studied by a fiber-optic laser-Doppler anemometer microscope.
    Seki J, Sasaki Y, Oyama T, Yamamoto J.
    Front Med Biol Eng; 1999 Nov; 9(2):113-21. PubMed ID: 10450498
    [Abstract] [Full Text] [Related]

  • 6. Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation.
    Golster H, Lindén M, Bertuglia S, Colantuoni A, Nilsson G, Sjöberg F.
    Microvasc Res; 1999 Jul; 58(1):62-73. PubMed ID: 10388604
    [Abstract] [Full Text] [Related]

  • 7. Measurement of red cell velocity in microvessels using particle image velocimetry (PIV).
    Nakano A, Sugii Y, Minamiyama M, Niimi H.
    Clin Hemorheol Microcirc; 2003 Jul; 29(3-4):445-55. PubMed ID: 14724373
    [Abstract] [Full Text] [Related]

  • 8. Evaluation of carbocyanine-labeled erythrocytes for microvascular measurements.
    Unthank JL, Lash JM, Nixon JC, Sidner RA, Bohlen HG.
    Microvasc Res; 1993 Mar; 45(2):193-210. PubMed ID: 8361402
    [Abstract] [Full Text] [Related]

  • 9. Three-dimensional analysis of contrast-filled microvessel diameters.
    Avinash GB, Quirk WS, Nuttall AL.
    Microvasc Res; 1993 Mar; 45(2):180-92. PubMed ID: 8361401
    [Abstract] [Full Text] [Related]

  • 10. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J, Charbonné R, Nanri K, Von Euw D, Borredon J, Kacem K, Méric P, Pinard E.
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [Abstract] [Full Text] [Related]

  • 11. Velocimetry of red blood cells in microvessels by the dual-slit method: effect of velocity gradients.
    Roman S, Lorthois S, Duru P, Risso F.
    Microvasc Res; 2012 Nov; 84(3):249-61. PubMed ID: 22963788
    [Abstract] [Full Text] [Related]

  • 12. Observations on the accuracy of photometric techniques used to measure some in vivo microvascular blood flow parameters.
    Cokelet GR, Pries AR, Kiani MF.
    Microcirculation; 1998 Nov; 5(1):61-70. PubMed ID: 9702723
    [Abstract] [Full Text] [Related]

  • 13. Method of rotation angle measurement in machine vision based on calibration pattern with spot array.
    Li W, Jin J, Li X, Li B.
    Appl Opt; 2010 Feb 20; 49(6):1001-6. PubMed ID: 20174168
    [Abstract] [Full Text] [Related]

  • 14. Measurement of flow dynamics in the microcirculation.
    Intaglietta M.
    Med Instrum; 1977 Feb 20; 11(3):149-52. PubMed ID: 875763
    [Abstract] [Full Text] [Related]

  • 15. The time-space correlation method for measurement of erythrocyte velocity in microvessels using a CCD linear image sensor.
    Watanabe M, Senga Y, Shiga T, Minami S.
    Microvasc Res; 1991 Jan 20; 41(1):41-6. PubMed ID: 1828853
    [Abstract] [Full Text] [Related]

  • 16. Modeling, design and validation of a novel microfluidic sensor for in-vitro isotonic measurement of microvessel contraction/dilation.
    Izzo I, Dario P.
    Biomed Microdevices; 2007 Feb 20; 9(1):69-81. PubMed ID: 17106638
    [Abstract] [Full Text] [Related]

  • 17. Digitally calibrated eye movement measurement system.
    Baczkowski LS, Enderle JD, Engelken EJ.
    Biomed Sci Instrum; 1991 Feb 20; 27():145-52. PubMed ID: 2065149
    [Abstract] [Full Text] [Related]

  • 18. A new video image analysis system to study red blood cell dynamics and oxygenation in capillary networks.
    Japee SA, Pittman RN, Ellis CG.
    Microcirculation; 2005 Sep 20; 12(6):489-506. PubMed ID: 16147466
    [Abstract] [Full Text] [Related]

  • 19. [Establishment of a system for measuring blood flow velocity of rat microvessel using dark background fluorescent image analysis method].
    Wu X, Chen H, Yan W, Zheng X.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct 20; 22(5):1063-6. PubMed ID: 16294755
    [Abstract] [Full Text] [Related]

  • 20. Flow visualization of microcirculation in solid tumor tissues: intravital microscopic observation of blood circulation by use of a confocal laser scanning microscope.
    Suzuki T, Yanagi K, Ookawa K, Hatakeyama K, Ohshima N.
    Front Med Biol Eng; 1996 Oct 20; 7(4):253-63. PubMed ID: 8956966
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.