These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The proton-pumping NADH:ubiquinone oxidoreductase (complex I) of Aquifex aeolicus. Scheide D, Huber R, Friedrich T. FEBS Lett; 2002 Feb 13; 512(1-3):80-4. PubMed ID: 11852056 [Abstract] [Full Text] [Related]
3. A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex. Schulte U, Haupt V, Abelmann A, Fecke W, Brors B, Rasmussen T, Friedrich T, Weiss H. J Mol Biol; 1999 Sep 24; 292(3):569-80. PubMed ID: 10497022 [Abstract] [Full Text] [Related]
4. The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae. Bertsova YV, Bogachev AV. FEBS Lett; 2004 Apr 09; 563(1-3):207-12. PubMed ID: 15063750 [Abstract] [Full Text] [Related]
5. Functional analysis of the mitochondrial alternative oxidase gene (aox1) from Aspergillus niger CGMCC 10142 and its effects on citric acid production. Hou L, Liu L, Zhang H, Zhang L, Zhang L, Zhang J, Gao Q, Wang D. Appl Microbiol Biotechnol; 2018 Sep 09; 102(18):7981-7995. PubMed ID: 30006782 [Abstract] [Full Text] [Related]
6. The respiratory complex I in yeast: isolation of a gene NUO51 coding for the nucleotide-binding subunit of NADH:ubiquinone oxidoreductase from the obligately aerobic yeast Yarrowia lipolytica. Rycovská A, Szabo R, Tomáska L, Nosek J. Folia Microbiol (Praha); 2000 Sep 09; 45(5):429-33. PubMed ID: 11357863 [Abstract] [Full Text] [Related]
7. Two NADH:ubiquinone oxidoreductases of Azotobacter vinelandii and their role in the respiratory protection. Bertsova YV, Bogachev AV, Skulachev VP. Biochim Biophys Acta; 1998 Feb 25; 1363(2):125-33. PubMed ID: 9507087 [Abstract] [Full Text] [Related]
8. On complex I and other NADH:ubiquinone reductases of Neurospora crassa mitochondria. Videir A, Duarte M. J Bioenerg Biomembr; 2001 Jun 25; 33(3):197-203. PubMed ID: 11695829 [Abstract] [Full Text] [Related]
9. Roles of subunit NuoL in the proton pumping coupling mechanism of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Narayanan M, Sakyiama JA, Elguindy MM, Nakamaru-Ogiso E. J Biochem; 2016 Oct 25; 160(4):205-215. PubMed ID: 27118783 [Abstract] [Full Text] [Related]
10. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. Proc Natl Acad Sci U S A; 2007 Feb 13; 104(7):2402-7. PubMed ID: 17287356 [Abstract] [Full Text] [Related]
11. Requirement for the proton-pumping NADH dehydrogenase I of Escherichia coli in respiration of NADH to fumarate and its bioenergetic implications. Tran QH, Bongaerts J, Vlad D, Unden G. Eur J Biochem; 1997 Feb 15; 244(1):155-60. PubMed ID: 9063459 [Abstract] [Full Text] [Related]
12. From NADH to ubiquinone in Neurospora mitochondria. Videira A, Duarte M. Biochim Biophys Acta; 2002 Sep 10; 1555(1-3):187-91. PubMed ID: 12206913 [Abstract] [Full Text] [Related]
13. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Komati Reddy G, Lindner SN, Wendisch VF. Appl Environ Microbiol; 2015 Mar 10; 81(6):1996-2005. PubMed ID: 25576602 [Abstract] [Full Text] [Related]
14. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain. Brasseur G, Tron G, Dujardin G, Slonimski PP, Brivet-Chevillotte P. Eur J Biochem; 1997 May 15; 246(1):103-11. PubMed ID: 9210471 [Abstract] [Full Text] [Related]
15. In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway. Guerrero-Castillo S, Vázquez-Acevedo M, González-Halphen D, Uribe-Carvajal S. Biochim Biophys Acta; 2009 Feb 15; 1787(2):75-85. PubMed ID: 19038229 [Abstract] [Full Text] [Related]
16. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase. Vinogradov AD. J Bioenerg Biomembr; 1993 Aug 15; 25(4):367-75. PubMed ID: 8226718 [Abstract] [Full Text] [Related]
17. The internal alternative NADH dehydrogenase of Neurospora crassa mitochondria. Duarte M, Peters M, Schulte U, Videira A. Biochem J; 2003 May 01; 371(Pt 3):1005-11. PubMed ID: 12556227 [Abstract] [Full Text] [Related]
18. Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? Brandt U, Kerscher S, Dröse S, Zwicker K, Zickermann V. FEBS Lett; 2003 Jun 12; 545(1):9-17. PubMed ID: 12788486 [Abstract] [Full Text] [Related]
19. Diversity and origin of alternative NADH:ubiquinone oxidoreductases. Kerscher SJ. Biochim Biophys Acta; 2000 Aug 15; 1459(2-3):274-83. PubMed ID: 11004440 [Abstract] [Full Text] [Related]
20. The three families of respiratory NADH dehydrogenases. Kerscher S, Dröse S, Zickermann V, Brandt U. Results Probl Cell Differ; 2008 Aug 15; 45():185-222. PubMed ID: 17514372 [Abstract] [Full Text] [Related] Page: [Next] [New Search]