These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


90 related items for PubMed ID: 8369744

  • 1. Site-specific inactivation of papain by ascorbic acid in the presence of cupric ions.
    Kanazawa H, Fujimoto S, Ohara A.
    Biol Pharm Bull; 1993 Jan; 16(1):11-6. PubMed ID: 8369744
    [Abstract] [Full Text] [Related]

  • 2. On the mechanism of inactivation of active papain by ascorbic acid in the presence of cupric ions.
    Kanazawa H, Fujimoto S, Ohara A.
    Biol Pharm Bull; 1994 Jun; 17(6):789-93. PubMed ID: 7951139
    [Abstract] [Full Text] [Related]

  • 3. Effect of radical scavengers on the inactivation of papain by ascorbic acid in the presence of cupric ions.
    Kanazawa H, Fujimoto S, Ohara A.
    Biol Pharm Bull; 1994 Apr; 17(4):476-81. PubMed ID: 8069251
    [Abstract] [Full Text] [Related]

  • 4. Inactivation of cholinesterase by ascorbic acid in the presence of cupric ions: a possible mechanism for the inactivation of an enzyme by the metal-catalyzed oxidation system.
    Kanazawa H, Fujimoto S, Ohara A.
    Biol Pharm Bull; 1995 Sep; 18(9):1179-83. PubMed ID: 8845800
    [Abstract] [Full Text] [Related]

  • 5. Oxidative inactivation of an extramitochondrial acetyl-CoA hydrolase by autoxidation of L-ascorbic acid.
    Nakanishi Y, Isohashi F, Matsunaga T, Sakamoto Y.
    Eur J Biochem; 1985 Oct 15; 152(2):337-42. PubMed ID: 2865135
    [Abstract] [Full Text] [Related]

  • 6. Studies on the inactivation of soluble and immobilized papain by the ascorbic acid-Cu2+ system: a model to propose the effect of free radicals on membrane-bound enzymes in vivo.
    Hussain S, Noor R, Iqbal J.
    Biotechnol Appl Biochem; 2001 Dec 15; 34(3):205-9. PubMed ID: 11730489
    [Abstract] [Full Text] [Related]

  • 7. Function of Cu2+ on the DNA-breaking actions of ascorbic acid and triose reductone.
    Shinohara K, So M, Nonaka M, Nishiyama K, Murakami H, Omura H.
    J Nutr Sci Vitaminol (Tokyo); 1983 Aug 15; 29(4):489-95. PubMed ID: 6644388
    [Abstract] [Full Text] [Related]

  • 8. Electrophoretic study on the DNA-breaking actions of ascorbic acid and triose reductone in the presence of Cu2+.
    Shinohara K, So M, Nonaka M, Nishiyama K, Murakami H, Omura H.
    J Nutr Sci Vitaminol (Tokyo); 1983 Aug 15; 29(4):481-8. PubMed ID: 6644387
    [Abstract] [Full Text] [Related]

  • 9. The analogous mechanisms of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper.
    Shinar E, Navok T, Chevion M.
    J Biol Chem; 1983 Dec 25; 258(24):14778-83. PubMed ID: 6317671
    [Abstract] [Full Text] [Related]

  • 10. Oxidative inactivation of paraoxonase1, an antioxidant protein and its effect on antioxidant action.
    Nguyen SD, Sok DE.
    Free Radic Res; 2003 Dec 25; 37(12):1319-30. PubMed ID: 14753756
    [Abstract] [Full Text] [Related]

  • 11. Ferrocenopapain, an organometallic protein formed by site-specific inactivation of papain using chloroacetylferrocene.
    Douglas KT, Ejim OS, Taylor K.
    J Enzyme Inhib; 1992 Dec 25; 6(3):233-42. PubMed ID: 1284960
    [Abstract] [Full Text] [Related]

  • 12. Decomposition of S-nitrosoglutathione in the presence of copper ions and glutathione.
    Gorren AC, Schrammel Astrid, Schmidt K, Mayer B.
    Arch Biochem Biophys; 1996 Jun 15; 330(2):219-28. PubMed ID: 8660650
    [Abstract] [Full Text] [Related]

  • 13. Mechanism of inactivation of bacteriophage deltaA containing single-stranded DNA by ascorbic acid.
    Murata A, Oyadomari R, Ohashi T, Kitagawa K.
    J Nutr Sci Vitaminol (Tokyo); 1975 Jun 15; 21(4):261-9. PubMed ID: 1214179
    [Abstract] [Full Text] [Related]

  • 14. Effect of metal ions on radical intensity and cytotoxic activity of ascorbate.
    Satoh K, Sakagami H.
    Anticancer Res; 1997 Jun 15; 17(2A):1125-9. PubMed ID: 9137459
    [Abstract] [Full Text] [Related]

  • 15. Interactive effects of polyphenols, tocopherol and ascorbic acid on the Cu2+-mediated oxidative modification of human low density lipoproteins.
    Yeomans VC, Linseisen J, Wolfram G.
    Eur J Nutr; 2005 Oct 15; 44(7):422-8. PubMed ID: 15827683
    [Abstract] [Full Text] [Related]

  • 16. Influence of metal ions on structure and catalytic activity of papain.
    Sathish HA, Kaul P, Prakash V.
    Indian J Biochem Biophys; 2000 Feb 15; 37(1):18-27. PubMed ID: 10983409
    [Abstract] [Full Text] [Related]

  • 17. Cupric ion-dependent inhibition of lysosomal acid cholesteryl ester hydrolase in the presence of hydroxylamine.
    Tanaka M, Iio T, Tabata T.
    Lipids; 1988 Feb 15; 23(2):126-30. PubMed ID: 3367699
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Ascorbic acid in human seminal plasma is protected from iron-mediated oxidation, but is potentially exposed to copper-induced damage.
    Menditto A, Pietraforte D, Minetti M.
    Hum Reprod; 1997 Aug 15; 12(8):1699-705. PubMed ID: 9308796
    [Abstract] [Full Text] [Related]

  • 20. Investigation of the mechanism of non-turnover-dependent inactivation of purified human 5-lipoxygenase. Inactivation by H2O2 and inhibition by metal ions.
    Percival MD, Denis D, Riendeau D, Gresser MJ.
    Eur J Biochem; 1992 Nov 15; 210(1):109-17. PubMed ID: 1446663
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.