These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
122 related items for PubMed ID: 8373184
41. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis. Sandmark J, Eliot AC, Famm K, Schneider G, Kirsch JF. Biochemistry; 2004 Feb 10; 43(5):1213-22. PubMed ID: 14756557 [Abstract] [Full Text] [Related]
42. Role of histidine residues in EcoP15I DNA methyltransferase activity as probed by chemical modification and site-directed mutagenesis. Jois PS, Madhu N, Rao DN. Biochem J; 2008 Mar 15; 410(3):543-53. PubMed ID: 17995451 [Abstract] [Full Text] [Related]
43. Selective alteration of the rate-limiting step in cytosolic aldehyde dehydrogenase through random mutagenesis. Ho KK, Hurley TD, Weiner H. Biochemistry; 2006 Aug 08; 45(31):9445-53. PubMed ID: 16878979 [Abstract] [Full Text] [Related]
44. Involvement of serine 74 in the enzyme-coenzyme interaction of rat liver mitochondrial aldehyde dehydrogenase. Rout UK, Weiner H. Biochemistry; 1994 Aug 02; 33(30):8955-61. PubMed ID: 8043582 [Abstract] [Full Text] [Related]
45. Characterization of Mycobacterium tuberculosis NAD kinase: functional analysis of the full-length enzyme by site-directed mutagenesis. Raffaelli N, Finaurini L, Mazzola F, Pucci L, Sorci L, Amici A, Magni G. Biochemistry; 2004 Jun 15; 43(23):7610-7. PubMed ID: 15182203 [Abstract] [Full Text] [Related]
46. Hepatic and testicular aldehyde dehydrogenase in tumor-bearing mice. Messiha FS. Vet Hum Toxicol; 1984 Jun 15; 26 Suppl 2():11-3. PubMed ID: 6395479 [Abstract] [Full Text] [Related]
47. The potential roles of the conserved amino acids in human liver mitochondrial aldehyde dehydrogenase. Sheikh S, Ni L, Hurley TD, Weiner H. J Biol Chem; 1997 Jul 25; 272(30):18817-22. PubMed ID: 9228056 [Abstract] [Full Text] [Related]
48. Human liver mitochondrial aldehyde dehydrogenase: three-dimensional structure and the restoration of solubility and activity of chimeric forms. Ni L, Zhou J, Hurley TD, Weiner H. Protein Sci; 1999 Dec 25; 8(12):2784-90. PubMed ID: 10631996 [Abstract] [Full Text] [Related]
49. Differences in the roles of conserved glutamic acid residues in the active site of human class 3 and class 2 aldehyde dehydrogenases. Mann CJ, Weiner H. Protein Sci; 1999 Oct 25; 8(10):1922-9. PubMed ID: 10548037 [Abstract] [Full Text] [Related]
50. Improvement of thermostable aldehyde dehydrogenase by directed evolution for application in Synthetic Cascade Biomanufacturing. Steffler F, Guterl JK, Sieber V. Enzyme Microb Technol; 2013 Oct 10; 53(5):307-14. PubMed ID: 24034429 [Abstract] [Full Text] [Related]
51. A histidine residue in the catalytic mechanism distinguishes Vibrio harveyi aldehyde dehydrogenase from other members of the aldehyde dehydrogenase superfamily. Zhang L, Ahvazi B, Szittner R, Vrielink A, Meighen E. Biochemistry; 2000 Nov 28; 39(47):14409-18. PubMed ID: 11087393 [Abstract] [Full Text] [Related]
52. Mutation of the conserved amino acids of mitochondria aldehyde dehydrogenase. Role of the conserved residues in the mechanism of reaction. Sheikh S, Ni L, Weiner H. Adv Exp Med Biol; 1997 Nov 28; 414():195-200. PubMed ID: 9059621 [No Abstract] [Full Text] [Related]
53. Contribution of conserved Glu255 and Cys289 residues to catalytic activity of recombinant aldehyde dehydrogenase from Bacillus licheniformis. Lee YC, Lin DT, Ong PL, Chen HL, Lo HF, Lin LL. Biochemistry (Mosc); 2011 Nov 28; 76(11):1233-41. PubMed ID: 22117550 [Abstract] [Full Text] [Related]
54. Beyond the catalytic core of ALDH: a web of important residues begins to emerge. Hempel J, Lindahl R, Perozich J, Wang B, Kuo I, Nicholas H. Chem Biol Interact; 2001 Jan 30; 130-132(1-3):39-46. PubMed ID: 11306029 [Abstract] [Full Text] [Related]
55. Chemical studies of high-Km aldehyde dehydrogenase from rat liver mitochondria. Tsai CS, Senior DJ. Biochem Cell Biol; 1991 Jan 30; 69(2-3):193-7. PubMed ID: 2031720 [Abstract] [Full Text] [Related]
56. Involvement of glutamate 399 and lysine 192 in the mechanism of human liver mitochondrial aldehyde dehydrogenase. Ni L, Sheikh S, Weiner H. J Biol Chem; 1997 Jul 25; 272(30):18823-6. PubMed ID: 9228057 [Abstract] [Full Text] [Related]
57. Subunit communication in tetrameric class 2 human liver aldehyde dehydrogenase as the basis for half-of-the-site reactivity and the dominance of the oriental subunit in a heterotetramer. Weiner H, Wei B, Zhou J. Chem Biol Interact; 2001 Jan 30; 130-132(1-3):47-56. PubMed ID: 11306030 [Abstract] [Full Text] [Related]
58. The effect of p-(chloromercuri)benzoate modification of cytosolic aldehyde dehydrogenase from sheep liver. Evidence for a second aldehyde binding site. Hill JP, Motion RL, Buckley PD, Blackwell LF. Arch Biochem Biophys; 1994 Apr 30; 310(1):256-63. PubMed ID: 8161214 [Abstract] [Full Text] [Related]
59. Site directed mutagenesis to probe for active site components of liver mitochondrial aldehyde dehydrogenase. Weiner H, Farrés J, Rout UJ, Wang X, Zheng CF. Adv Exp Med Biol; 1995 Apr 30; 372():1-7. PubMed ID: 7484366 [Abstract] [Full Text] [Related]
60. New insights into the half-of-the-sites reactivity of human aldehyde dehydrogenase 1A1. Yoval-Sánchez B, Pardo JP, Rodríguez-Zavala JS. Proteins; 2013 Aug 30; 81(8):1330-9. PubMed ID: 23444097 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]