These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


100 related items for PubMed ID: 837375

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Mechanism of efflux of melphalan from L5178Y lymphoblasts in vitro.
    Begleiter A, Grover J, Goldenberg GJ.
    Cancer Res; 1982 Mar; 42(3):987-91. PubMed ID: 7059994
    [Abstract] [Full Text] [Related]

  • 3. Mechanism of uptake of nitrosoureas by L5178Y lymphoblasts in vitro.
    Begleiter A, Lam HP, Goldenberg GJ.
    Cancer Res; 1977 Apr; 37(4):1022-7. PubMed ID: 557367
    [Abstract] [Full Text] [Related]

  • 4. Comparison of adriamycin uptake in chick embryo heart and liver cells an murine L5178Y lymphoblasts in vitro: role of drug uptake in cardiotoxicity.
    Johnson BA, Cheang MS, Goldenberg GJ.
    Cancer Res; 1986 Jan; 46(1):218-23. PubMed ID: 3940192
    [Abstract] [Full Text] [Related]

  • 5. Uptake and decomposition of chlorozotocin in L5178Y lymphoblasts in vitro.
    Lam HY, Talgoy MM, Goldenberg GJ.
    Cancer Res; 1980 Nov; 40(11):3950-5. PubMed ID: 6451281
    [Abstract] [Full Text] [Related]

  • 6. Transport of (2-chloroethyl)-3-sarcosinamide-1-nitrosourea in the human glioma cell line SK-MG-1 is mediated by an epinephrine-sensitive carrier system.
    Noë AJ, Malapetsa A, Panasci LC.
    Mol Pharmacol; 1993 Jul; 44(1):204-9. PubMed ID: 8341272
    [Abstract] [Full Text] [Related]

  • 7. Evidence for active transport of melphalan by two amino acid carriers in L5178Y lymphoblasts in vitro.
    Begleiter A, Lam HY, Grover J, Froese E, Goldenberg GJ.
    Cancer Res; 1979 Feb; 39(2 Pt 1):353-9. PubMed ID: 570091
    [No Abstract] [Full Text] [Related]

  • 8. Transport of amino acid amide sarcosinamide and sarcosinamide chloroethylnitrosourea in human glioma SK-MG-1 cells.
    Skalski V, Feindel W, Panasci LC.
    Cancer Res; 1990 May 15; 50(10):3062-6. PubMed ID: 1692254
    [Abstract] [Full Text] [Related]

  • 9. Active carrier-mediated transport of melphalan by two separate amino acid transport systems in LPC-1 plasmacytoma cells in vitro.
    Goldenberg GJ, Lam HY, Begleiter A.
    J Biol Chem; 1979 Feb 25; 254(4):1057-64. PubMed ID: 762115
    [Abstract] [Full Text] [Related]

  • 10. Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid carrier system.
    Greig NH, Momma S, Sweeney DJ, Smith QR, Rapoport SI.
    Cancer Res; 1987 Mar 15; 47(6):1571-6. PubMed ID: 3815357
    [Abstract] [Full Text] [Related]

  • 11. The relationship among transport, intracellular binding, and inhibition of RNA synthesis by actinomycin D in Ehrlich ascites tumor cells in vitro.
    Bowen D, Goldman ID.
    Cancer Res; 1975 Nov 15; 35(11 Pt 1):3054-60. PubMed ID: 1182700
    [Abstract] [Full Text] [Related]

  • 12. Derivatives of melphalan designed to enhance drug accumulation in cancer cells.
    Kupczyk-Subotkowska L, Tamura K, Pal D, Sakaeda T, Siahaan TJ, Stella VJ, Borchardt RT.
    J Drug Target; 1997 Nov 15; 4(6):359-70. PubMed ID: 9239576
    [Abstract] [Full Text] [Related]

  • 13. A multicomponent analysis of amino acid transport systems in human lymphocytes. 1. Kinetic parameters of the A and L systems and pathways of uptake of naturally occurring amino acids in blood lymphocytes.
    Segel GB, Simon W, Lichtman MA.
    J Cell Physiol; 1983 Sep 15; 116(3):372-8. PubMed ID: 6604062
    [Abstract] [Full Text] [Related]

  • 14. Amino acid-conferred resistance to melphalan. I. Structure-activity relationship in cultured murine L1210 leukemia cells.
    Vistica DT, Toal JN, Rabinovitz M.
    Cancer Treat Rep; 1976 Sep 15; 60(9):1363-7. PubMed ID: 1016969
    [Abstract] [Full Text] [Related]

  • 15. Inhibition of carrier-mediated uptake of epirubicin reduces cytotoxicity in primary culture of rat hepatocytes.
    Iwakiri T, Okumura M, Hidaka M, Kumagai Y, Ichihara E, Kawano Y, Arimori K.
    J Appl Toxicol; 2008 Apr 15; 28(3):329-36. PubMed ID: 17604344
    [Abstract] [Full Text] [Related]

  • 16. Sensitivity to melphalan as a function of transport activity and proliferative rate in BALB/c 3T3 fibroblasts.
    Blosmanis R, Wright JA, Goldenberg GJ.
    Cancer Res; 1987 Mar 01; 47(5):1273-7. PubMed ID: 3815338
    [Abstract] [Full Text] [Related]

  • 17. The role of drug transport in resistance to nitrogen mustard and other alkylating agents in L518Y lymphoblsts.
    Goldenberg GJ.
    Cancer Res; 1975 Jul 01; 35(7):1687-92. PubMed ID: 1055634
    [Abstract] [Full Text] [Related]

  • 18. Enhancement of transport of D-melphalan analogue by conjugation with L-glutamate across bovine brain microvessel endothelial cell monolayers.
    Sakaeda T, Siahaan TJ, Audus KL, Stella VJ.
    J Drug Target; 2000 Jul 01; 8(3):195-204. PubMed ID: 10938529
    [Abstract] [Full Text] [Related]

  • 19. Transport of L-[14C]cystine and L-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells.
    Hayes D, Wiessner M, Rauen T, McBean GJ.
    Neurochem Int; 2005 Jun 01; 46(8):585-94. PubMed ID: 15863236
    [Abstract] [Full Text] [Related]

  • 20. Characterization of L-thyroxine transport into hepatocytes isolated from juvenile rainbow trout (Oncorhynchus mykiss).
    Riley WW, Eales JG.
    Gen Comp Endocrinol; 1993 Apr 01; 90(1):31-42. PubMed ID: 8504920
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.