These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1005 related items for PubMed ID: 8380968

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Stimulation of microsomal production of reactive oxygen intermediates by rifamycin SV: effect of ferric complexes and comparisons between NADPH and NADH.
    Kukiełka E, Cederbaum AI.
    Arch Biochem Biophys; 1992 Nov 01; 298(2):602-11. PubMed ID: 1329662
    [Abstract] [Full Text] [Related]

  • 4. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN, Yang MX, Lasker JM, Cederbaum AI.
    Mol Pharmacol; 1996 May 01; 49(5):814-21. PubMed ID: 8622631
    [Abstract] [Full Text] [Related]

  • 5. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates.
    Kukiełka E, Cederbaum AI.
    Arch Biochem Biophys; 1989 Dec 01; 275(2):540-50. PubMed ID: 2556968
    [Abstract] [Full Text] [Related]

  • 6. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E, Cederbaum AI.
    Biochem Pharmacol; 1991 Jul 15; 42(3):529-35. PubMed ID: 1650215
    [Abstract] [Full Text] [Related]

  • 7. Kinetic studies on spin trapping of superoxide and hydroxyl radicals generated in NADPH-cytochrome P-450 reductase-paraquat systems. Effect of iron chelates.
    Yamazaki I, Piette LH, Grover TA.
    J Biol Chem; 1990 Jan 15; 265(2):652-9. PubMed ID: 2153108
    [Abstract] [Full Text] [Related]

  • 8. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E, Cederbaum AI.
    Arch Biochem Biophys; 1990 Dec 15; 283(2):326-33. PubMed ID: 2275546
    [Abstract] [Full Text] [Related]

  • 9. Spin trapping of free radical species produced during the microsomal metabolism of ethanol.
    Albano E, Tomasi A, Goria-Gatti L, Dianzani MU.
    Chem Biol Interact; 1988 Dec 15; 65(3):223-34. PubMed ID: 2837334
    [Abstract] [Full Text] [Related]

  • 10. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals.
    Kukiełka E, Puntarulo S, Cederbaum AI.
    Arch Biochem Biophys; 1989 Sep 15; 273(2):319-30. PubMed ID: 2774554
    [Abstract] [Full Text] [Related]

  • 11. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH.
    Dicker E, Cederbaum AI.
    Arch Biochem Biophys; 1992 Mar 15; 293(2):274-80. PubMed ID: 1311163
    [Abstract] [Full Text] [Related]

  • 12. A comparative study of the redox-cycling of a quinone (rifamycin S) and a quinonimine (rifabutin) antibiotic by rat liver microsomes.
    Rao DN, Cederbaum AI.
    Free Radic Biol Med; 1997 Mar 15; 22(3):439-46. PubMed ID: 8981035
    [Abstract] [Full Text] [Related]

  • 13. Ferritin stimulation of hydroxyl radical production by rat liver nuclei.
    Kukiełka E, Cederbaum AI.
    Arch Biochem Biophys; 1994 Jan 15; 308(1):70-7. PubMed ID: 8311476
    [Abstract] [Full Text] [Related]

  • 14. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW, Feierman DE, Cederbaum AI.
    Arch Biochem Biophys; 1984 Jul 15; 232(1):378-90. PubMed ID: 6331321
    [Abstract] [Full Text] [Related]

  • 15. Role of superoxide and trace transition metals in the production of alpha-hydroxyethyl radical from ethanol by microsomes from alcohol dehydrogenase-deficient deermice.
    Knecht KT, Thurman RG, Mason RP.
    Arch Biochem Biophys; 1993 Jun 15; 303(2):339-48. PubMed ID: 8390220
    [Abstract] [Full Text] [Related]

  • 16. ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone: role in DNA damage.
    Li Y, Kuppusamy P, Zweier JL, Trush MA.
    Chem Biol Interact; 1995 Feb 15; 94(2):101-20. PubMed ID: 7828218
    [Abstract] [Full Text] [Related]

  • 17. ESR and HPLC-EC analysis of ethanol oxidation to 1-hydroxyethyl radical: rapid reduction and quantification of POBN and PBN nitroxides.
    Stoyanovsky DA, Cederbaum AI.
    Free Radic Biol Med; 1998 Sep 15; 25(4-5):536-45. PubMed ID: 9741590
    [Abstract] [Full Text] [Related]

  • 18. Metabolism of ethanol to 1-hydroxyethyl radicals in rat liver microsomes: comparative studies with three spin trapping agents.
    Reinke LA, Moore DR, Hague CM, McCay PB.
    Free Radic Res; 1994 Sep 15; 21(4):213-22. PubMed ID: 7827693
    [Abstract] [Full Text] [Related]

  • 19. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE, Roeder TL, Buettner GR.
    Biochim Biophys Acta; 1991 Oct 31; 1075(3):213-22. PubMed ID: 1659450
    [Abstract] [Full Text] [Related]

  • 20. Trace transition metal-catalyzed reactions in the microsomal metabolism of alkyl hydrazines to carbon-centered free radicals.
    Rumyantseva GV, Kennedy CH, Mason RP.
    J Biol Chem; 1991 Nov 15; 266(32):21422-7. PubMed ID: 1657966
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 51.