These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 8386628

  • 1. Tissue-type plasminogen activator mutants imitating urokinase in the peptide link between kringle and protease domains and at selected sites within the protease domain.
    Hinzmann B, Wernicke D, Pfeifer M, Zacharias U, Fischer B, Eisenmenger F, Will H.
    Eur J Biochem; 1993 Apr 01; 213(1):437-43. PubMed ID: 8386628
    [Abstract] [Full Text] [Related]

  • 2. Domain-domain interactions in hybrids of tissue-type plasminogen activator and urokinase-type plasminogen activator.
    Bakker AH, Nieuwenbroek NM, Verheijen JH.
    Protein Eng; 1995 Dec 01; 8(12):1295-1302. PubMed ID: 8869642
    [Abstract] [Full Text] [Related]

  • 3. Tissue-type plasminogen activator (tPA) interacts with urokinase-type plasminogen activator (uPA) via tPA's lysine binding site. An explanation of the poor fibrin affinity of recombinant tPA/uPA chimeric molecules.
    Novokhatny V, Medved L, Lijnen HR, Ingham K.
    J Biol Chem; 1995 Apr 14; 270(15):8680-5. PubMed ID: 7721771
    [Abstract] [Full Text] [Related]

  • 4. The effector roles of kringle 1 and kringle 2 in the enzymatic properties of recombinant tissue-type plasminogen activator as revealed by generation of recombinant molecules containing each kringle linked to the protease domain.
    Rydzewski A, Castellino FJ.
    Arch Biochem Biophys; 1993 Jan 14; 300(1):472-82. PubMed ID: 8424682
    [Abstract] [Full Text] [Related]

  • 5. Characterization of human tissue-type plasminogen activator variants with amino acid mutations in the kringle 1 domain.
    Ikenaka Y, Yajima K, Yahara H, Maruyama H, Matsumoto K, Okada K, Ueshima S, Matsuo O.
    Blood Coagul Fibrinolysis; 1992 Aug 14; 3(4):381-7. PubMed ID: 1330023
    [Abstract] [Full Text] [Related]

  • 6. The construction and expression of chimeric urokinase-type plasminogen activator genes containing kringle domains of human plasminogen.
    Boutaud A, Castellino FJ.
    Arch Biochem Biophys; 1993 Jun 14; 303(2):222-30. PubMed ID: 8512311
    [Abstract] [Full Text] [Related]

  • 7. Kringle glycosylation in a modified human tissue plasminogen activator improves functional properties.
    Berg DT, Burck PJ, Berg DH, Grinnell BW.
    Blood; 1993 Mar 01; 81(5):1312-22. PubMed ID: 8382971
    [Abstract] [Full Text] [Related]

  • 8. Structural determinants of the noncatalytic chain of tissue-type plasminogen activator that modulate its association rate with plasminogen activator inhibitor-1.
    de Serrano VS, Castellino FJ.
    J Biol Chem; 1990 Jun 25; 265(18):10473-8. PubMed ID: 2113057
    [Abstract] [Full Text] [Related]

  • 9. The tissue plasminogen activator finger domain confers fibrin-dependent enhancement of catalytic activity to single-chain urokinase-type plasminogen activator.
    Lubin IM, Caban R, Runge MS.
    J Biol Chem; 1993 Mar 15; 268(8):5550-6. PubMed ID: 8449917
    [Abstract] [Full Text] [Related]

  • 10. Identification of tissue-type plasminogen activator-specific plasminogen activator inhibitor-1 mutants. Evidence that second sites of interaction contribute to target specificity.
    Sherman PM, Lawrence DA, Verhamme IM, Paielli D, Shore JD, Ginsburg D.
    J Biol Chem; 1995 Apr 21; 270(16):9301-6. PubMed ID: 7721851
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Protease activity of urokinase and tumor progression in a syngeneic mammary cancer model.
    Merchan JR, Tang J, Hu G, Lin Y, Mutter W, Tong C, Karumanchi SA, Russell SJ, Sukhatme VP.
    J Natl Cancer Inst; 2006 Jun 07; 98(11):756-64. PubMed ID: 16757700
    [Abstract] [Full Text] [Related]

  • 16. Construction and expression of hybrid plasminogen activators prepared from tissue-type plasminogen activator and urokinase-type plasminogen activator genes.
    Lee SG, Kalyan N, Wilhelm J, Hum WT, Rappaport R, Cheng SM, Dheer S, Urbano C, Hartzell RW, Ronchetti-Blume M.
    J Biol Chem; 1988 Feb 25; 263(6):2917-24. PubMed ID: 3125172
    [Abstract] [Full Text] [Related]

  • 17. The plasminogen activator inhibitor-1 binding site in the kringle-2 domain of tissue-type plasminogen activator.
    Kaneko M, Mimuro J, Matsuda M, Sakata Y.
    Biochem Biophys Res Commun; 1991 Aug 15; 178(3):1160-6. PubMed ID: 1908232
    [Abstract] [Full Text] [Related]

  • 18. Artificial exon shuffling between tissue-type plasminogen activator (t-PA) and urokinase (u-PA): a comparative study on the fibrinolytic properties of t-PA/u-PA hybrid proteins.
    de Vries C, Veerman H, Blasi F, Pannekoek H.
    Biochemistry; 1988 Apr 05; 27(7):2565-72. PubMed ID: 3132969
    [Abstract] [Full Text] [Related]

  • 19. Construction and expression of a hybrid plasminogen activator gene with sequences from non-protease region of tissue-type plasminogen activator (t-PA) and protease region of urokinase (u-PA).
    Kalyan NK, Lee SG, Cheng SM, Hartzell R, Urbano C, Hung PP.
    Gene; 1988 Sep 07; 68(2):205-12. PubMed ID: 3146528
    [Abstract] [Full Text] [Related]

  • 20. Functional effects of kringle 2 glycosylation in a hybrid plasminogen activator.
    Asselbergs FA, Bürgi R, van Oostrum J.
    Blood Coagul Fibrinolysis; 1993 Feb 07; 4(1):27-33. PubMed ID: 8384498
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.