These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


81 related items for PubMed ID: 8387348

  • 21. [Effects of power frequency magnetic field on Ca2+ transport of skeletal muscle sarcoplasmic reticulum vesicles].
    Liu RC, Zhou ZJ, Chu KP, Liu XL, Chen SD, Xia RH.
    Zhonghua Yu Fang Yi Xue Za Zhi; 2006 May; 40(3):168-72. PubMed ID: 16836880
    [Abstract] [Full Text] [Related]

  • 22. Sarcoplasmic reticulum calcium release is stimulated and inhibited by daunorubicin and daunorubicinol.
    Olson RD, Li X, Palade P, Shadle SE, Mushlin PS, Gambliel HA, Fill M, Boucek RJ, Cusack BJ.
    Toxicol Appl Pharmacol; 2000 Dec 01; 169(2):168-76. PubMed ID: 11097869
    [Abstract] [Full Text] [Related]

  • 23. Bradykinin activates R-, T-, and L-type Ca2+ channels and induces a sustained increase of nuclear Ca2+ in aortic vascular smooth muscle cells.
    Bkaily G, Jaalouk D, Jacques D, Economos D, Hassan G, Simaan M, Regoli D, Pothier P.
    Can J Physiol Pharmacol; 1997 Jun 01; 75(6):652-60. PubMed ID: 9276144
    [Abstract] [Full Text] [Related]

  • 24. Calcium transporters and signalling in smooth muscles.
    Floyd R, Wray S.
    Cell Calcium; 2007 Jun 01; 42(4-5):467-76. PubMed ID: 17624426
    [Abstract] [Full Text] [Related]

  • 25. The luminal Ca2+ transient controls Ca2+ release/re-uptake of sarcoplasmic reticulum.
    Ikemoto N, Yamamoto T.
    Biochem Biophys Res Commun; 2000 Dec 29; 279(3):858-63. PubMed ID: 11162440
    [Abstract] [Full Text] [Related]

  • 26. Characteristics of the interaction of melittin with sarcoplasmic reticulum membranes.
    Shorina EA, Mast NV, Storey KB, Lopina OD, Rubtsov AM.
    Biochemistry (Mosc); 1999 Jun 29; 64(6):705-13. PubMed ID: 10395987
    [Abstract] [Full Text] [Related]

  • 27. Effects of phytoestrogens on sarcoplasmic/endoplasmic reticulum calcium ATPase 2a and Ca2+ uptake into cardiac sarcoplasmic reticulum.
    Olson ML, Kargacin ME, Honeyman TW, Ward CA, Kargacin GJ.
    J Pharmacol Exp Ther; 2006 Feb 29; 316(2):628-35. PubMed ID: 16227472
    [Abstract] [Full Text] [Related]

  • 28. Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle.
    Abramson JJ, Trimm JL, Weden L, Salama G.
    Proc Natl Acad Sci U S A; 1983 Mar 29; 80(6):1526-30. PubMed ID: 6572915
    [Abstract] [Full Text] [Related]

  • 29. Modulation of agonist-induced Ca2+ release by SR Ca2+ load: direct SR and cytosolic Ca2+ measurements in rat uterine myocytes.
    Shmygol A, Wray S.
    Cell Calcium; 2005 Mar 29; 37(3):215-23. PubMed ID: 15670868
    [Abstract] [Full Text] [Related]

  • 30. [Effect of 30-day hypokinesia on Ca2+ transport, activity of ATPases and lipid peroxidation in the membranes of the sarcoplasmic reticulum and in the mitochondria of the skeletal and heart muscles].
    Chernysheva GV, Iliushko NA, Kondrat'ev IuI, Mel'nik VI, Stoĭda LV.
    Vopr Med Khim; 1982 Mar 29; 28(6):60-3. PubMed ID: 6218686
    [No Abstract] [Full Text] [Related]

  • 31. Ca2+/calmodulin-dependent phosphorylation of the Ca2+-ATPase, uncoupled from phospholamban, stimulates Ca2+-pumping in native cardiac sarcoplasmic reticulum.
    Xu A, Narayanan N.
    Biochem Biophys Res Commun; 1999 Apr 29; 258(1):66-72. PubMed ID: 10222236
    [Abstract] [Full Text] [Related]

  • 32. Peptide fragments of the dihydropyridine receptor can modulate cardiac ryanodine receptor channel activity and sarcoplasmic reticulum Ca2+ release.
    Dulhunty AF, Curtis SM, Cengia L, Sakowska M, Casarotto MG.
    Biochem J; 2004 Apr 01; 379(Pt 1):161-72. PubMed ID: 14678014
    [Abstract] [Full Text] [Related]

  • 33. Effect of triterpene glycosides of marine invertebrates on permeability of biological and artificial membranes.
    Rubtsov BV, Ruzhitskii AO, Klebanov GI, Sedov AM, Vladimirov YuA.
    Biol Bull Acad Sci USSR; 1980 Apr 01; 7(3):219-23. PubMed ID: 7317509
    [Abstract] [Full Text] [Related]

  • 34. Subcellular fractions of vascular smooth muscle exhibiting calcium transport properties.
    Ford GD.
    Fed Proc; 1976 May 01; 35(6):1298-301. PubMed ID: 770203
    [Abstract] [Full Text] [Related]

  • 35. The relationship between membrane potential and Ca2+ fluxes in isolated sarcoplasmic reticulum vesicles.
    Beeler T, Martonosi A.
    FEBS Lett; 1979 Feb 01; 98(1):173-6. PubMed ID: 428533
    [No Abstract] [Full Text] [Related]

  • 36. [Ca2+ transport and free-radical oxidation of lipids in sarcoplasmic reticulum membranes].
    Kozlov IuP, Ritov VB, Kagan VE.
    Dokl Akad Nauk SSSR; 1973 Oct 11; 212(5):1239-42. PubMed ID: 4751340
    [No Abstract] [Full Text] [Related]

  • 37. Determination of calcium transport and phosphoprotein phosphatase activity in microsomes from respiratory and vascular smooth muscle.
    Sands H, Mascali J, Paietta E.
    Biochim Biophys Acta; 1977 Dec 22; 500(2):223-34. PubMed ID: 201293
    [Abstract] [Full Text] [Related]

  • 38. The mechanism of Ca transport and the permeability of sarcoplasmic reticulum membranes.
    Martonosi A, de Boland AR, Boland R, Vanderkooi JM, Halpin RA.
    Recent Adv Stud Cardiac Struct Metab; 1974 Dec 22; 4():473-94. PubMed ID: 4283218
    [No Abstract] [Full Text] [Related]

  • 39. [Mutual effect of phosphorylation, oxidation, and proteolysis on calcium transport in the sarcoplasmic reticulum of the heart and vessels].
    Antipenko AE, Krasovskaia IE, Dizhe GP, Sharonov BP, Lyzlova SN.
    Dokl Akad Nauk; 1992 Dec 22; 326(5):920-3. PubMed ID: 1337009
    [No Abstract] [Full Text] [Related]

  • 40. Calcium efflux from sarcoplasmic reticulum microsomes due to oxidation and sulfhydryl-binding agents.
    Scherer NM, Deamer DW.
    J Free Radic Biol Med; 1986 Dec 22; 2(4):249-54. PubMed ID: 3034997
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.