These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 8390039

  • 1. Breast cancer formation in transgenic animals induced by the whey acidic protein SV40 T antigen (WAP-SV-T) hybrid gene.
    Tzeng YJ, Guhl E, Graessmann M, Graessmann A.
    Oncogene; 1993 Jul; 8(7):1965-71. PubMed ID: 8390039
    [Abstract] [Full Text] [Related]

  • 2. SV40 T-antigen induces breast cancer formation with a high efficiency in lactating and virgin WAP-SV-T transgenic animals but with a low efficiency in ovariectomized animals.
    Santarelli R, Tzeng YJ, Zimmermann C, Guhl E, Graessmann A.
    Oncogene; 1996 Feb 01; 12(3):495-505. PubMed ID: 8637705
    [Abstract] [Full Text] [Related]

  • 3. SV40 T/t-antigen induces premature mammary gland involution by apoptosis and selects for p53 missense mutation in mammary tumors.
    Tzeng YJ, Zimmermann C, Guhl E, Berg B, Avantaggiati ML, Graessmann A.
    Oncogene; 1998 Apr 23; 16(16):2103-14. PubMed ID: 9572491
    [Abstract] [Full Text] [Related]

  • 4. Epigenetic mechanisms affect mutant p53 transgene expression in WAP-mutp53 transgenic mice.
    Krepulat F, Löhler J, Heinlein C, Hermannstädter A, Tolstonog GV, Deppert W.
    Oncogene; 2005 Jul 07; 24(29):4645-59. PubMed ID: 15870706
    [Abstract] [Full Text] [Related]

  • 5. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis.
    Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, Kordon E, Callahan R, Merlino G, Smith GH.
    Cancer Res; 1996 Apr 15; 56(8):1775-85. PubMed ID: 8620493
    [Abstract] [Full Text] [Related]

  • 6. The SV40 small t-antigen prevents mammary gland differentiation and induces breast cancer formation in transgenic mice; truncated large T-antigen molecules harboring the intact p53 and pRb binding region do not have this effect.
    Goetz F, Tzeng YJ, Guhl E, Merker J, Graessmann M, Graessmann A.
    Oncogene; 2001 Apr 26; 20(18):2325-32. PubMed ID: 11402328
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Expression of a viral oncoprotein during mammary gland development alters cell fate and function: induction of p53-independent apoptosis is followed by impaired milk protein production in surviving cells.
    Li M, Hu J, Heermeier K, Hennighausen L, Furth PA.
    Cell Growth Differ; 1996 Jan 26; 7(1):3-11. PubMed ID: 8788028
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Distal control of the pig whey acidic protein (WAP) locus in transgenic mice.
    Saidi S, Rival-Gervier S, Daniel-Carlier N, Thépot D, Morgenthaler C, Viglietta C, Prince S, Passet B, Houdebine LM, Jolivet G.
    Gene; 2007 Oct 15; 401(1-2):97-107. PubMed ID: 17692477
    [Abstract] [Full Text] [Related]

  • 11. 2-difluoromethylornithine and dehydroepiandrosterone inhibit mammary tumor progression but not mammary or prostate tumor initiation in C3(1)/SV40 T/t-antigen transgenic mice.
    Green JE, Shibata MA, Shibata E, Moon RC, Anver MR, Kelloff G, Lubet R.
    Cancer Res; 2001 Oct 15; 61(20):7449-55. PubMed ID: 11606379
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Renin-promoter SV40 large T-antigen transgenes induce tumors irrespective of normal cellular expression of renin genes.
    Sola C, Tronik D, Dreyfus M, Babinet C, Rougeon F.
    Oncogene Res; 1989 Oct 15; 5(2):149-53. PubMed ID: 2558335
    [Abstract] [Full Text] [Related]

  • 14. HBX causes cyclin D1 overexpression and development of breast cancer in transgenic animals that are heterozygous for p53.
    Klein A, Guhl E, Tzeng YJ, Fuhrhop J, Levrero M, Graessmann M, Graessmann A.
    Oncogene; 2003 May 15; 22(19):2910-9. PubMed ID: 12771941
    [Abstract] [Full Text] [Related]

  • 15. Reduction of tumorigenesis and invasion of human breast cancer cells by whey acidic protein (WAP).
    Nukumi N, Iwamori T, Kano K, Naito K, Tojo H.
    Cancer Lett; 2007 Jul 08; 252(1):65-74. PubMed ID: 17215074
    [Abstract] [Full Text] [Related]

  • 16. Understanding mammary gland development through the imbalanced expression of growth regulators.
    Robinson GW, Smith GH, Gallahan D, Zimmer A, Furth PA, Hennighausen L.
    Dev Dyn; 1996 Jun 08; 206(2):159-68. PubMed ID: 8725283
    [Abstract] [Full Text] [Related]

  • 17. Regulatory function of whey acidic protein in the proliferation of mouse mammary epithelial cells in vivo and in vitro.
    Nukumi N, Ikeda K, Osawa M, Iwamori T, Naito K, Tojo H.
    Dev Biol; 2004 Oct 01; 274(1):31-44. PubMed ID: 15355786
    [Abstract] [Full Text] [Related]

  • 18. In vivo and in vitro expression of human serum albumin genomic sequences in mammary epithelial cells with beta-lactoglobulin and whey acidic protein promoters.
    Barash I, Faerman A, Richenstein M, Kari R, Damary GM, Shani M, Bissell MJ.
    Mol Reprod Dev; 1999 Mar 01; 52(3):241-52. PubMed ID: 10206655
    [Abstract] [Full Text] [Related]

  • 19. WAP-TAg transgenic mice and the study of dysregulated cell survival, proliferation, and mutation during breast carcinogenesis.
    Li M, Lewis B, Capuco AV, Laucirica R, Furth PA.
    Oncogene; 2000 Feb 21; 19(8):1010-9. PubMed ID: 10713684
    [Abstract] [Full Text] [Related]

  • 20. Expression of the whey acidic protein (Wap) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells.
    Triplett AA, Sakamoto K, Matulka LA, Shen L, Smith GH, Wagner KU.
    Genesis; 2005 Sep 21; 43(1):1-11. PubMed ID: 16106354
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.