These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
196 related items for PubMed ID: 8390090
1. The dependence of the in vitro fermentation of dietary fibre to short-chain fatty acids on the contents of soluble non-starch polysaccharides. Mortensen PB, Nordgaard-Andersen I. Scand J Gastroenterol; 1993 May; 28(5):418-22. PubMed ID: 8390090 [Abstract] [Full Text] [Related]
2. Fermentation to short-chain fatty acids and lactate in human faecal batch cultures. Intra- and inter-individual variations versus variations caused by changes in fermented saccharides. Mortensen PB, Hove H, Clausen MR, Holtug K. Scand J Gastroenterol; 1991 Dec; 26(12):1285-94. PubMed ID: 1662408 [Abstract] [Full Text] [Related]
3. Estimation of the fermentability of dietary fibre in vitro: a European interlaboratory study. Barry JL, Hoebler C, Macfarlane GT, Macfarlane S, Mathers JC, Reed KA, Mortensen PB, Nordgaard I, Rowland IR, Rumney CJ. Br J Nutr; 1995 Sep; 74(3):303-22. PubMed ID: 7547846 [Abstract] [Full Text] [Related]
4. Short-chain fatty acids, lactate, and ammonia in ileorectal and ileal pouch contents: a model of cecal fermentation. Nordgaard-Andersen I, Clausen MR, Mortensen PB. JPEN J Parenter Enteral Nutr; 1993 Sep; 17(4):324-31. PubMed ID: 8271356 [Abstract] [Full Text] [Related]
5. Bulk laxatives: their dietary fibre composition, degradation, and faecal bulking capacity in the rat. Nyman M, Asp NG. Scand J Gastroenterol; 1985 Sep; 20(7):887-95. PubMed ID: 2996120 [Abstract] [Full Text] [Related]
6. Colonic fermentation of ispaghula, wheat bran, glucose, and albumin to short-chain fatty acids and ammonia evaluated in vitro in 50 subjects. Mortensen PB, Clausen MR, Bonnén H, Hove H, Holtug K. JPEN J Parenter Enteral Nutr; 1992 Sep; 16(5):433-9. PubMed ID: 1331553 [Abstract] [Full Text] [Related]
7. Incubation of selected fermentable fibres with feline faecal inoculum: correlations between in vitro fermentation characteristics and end products. Rochus K, Bosch G, Vanhaecke L, Van de Velde H, Depauw S, Xu J, Fievez V, Van de Wiele T, Hendriks WH, Paul Jules Janssens G, Hesta M. Arch Anim Nutr; 2013 Sep; 67(5):416-31. PubMed ID: 23952674 [Abstract] [Full Text] [Related]
8. Taurocholic acid adsorption during non-starch polysaccharide fermentation: an in vitro study. Gelissen IC, Eastwood MA. Br J Nutr; 1995 Aug; 74(2):221-8. PubMed ID: 7547839 [Abstract] [Full Text] [Related]
9. Evaluation of fermentability of acid-treated maize husk by rat caecal bacteria in vivo and in vitro. Hara H, Saito Y, Nakashima H, Kiriyama S. Br J Nutr; 1994 May; 71(5):719-29. PubMed ID: 8054327 [Abstract] [Full Text] [Related]
10. In vitro fermentation of chewed mango and banana: particle size, starch and vascular fibre effects. Low DY, Williams BA, D'Arcy BR, Flanagan BM, Gidley MJ. Food Funct; 2015 Aug; 6(8):2464-74. PubMed ID: 26215214 [Abstract] [Full Text] [Related]
11. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. Nordlund E, Aura AM, Mattila I, Kössö T, Rouau X, Poutanen K. J Agric Food Chem; 2012 Aug 22; 60(33):8134-45. PubMed ID: 22731123 [Abstract] [Full Text] [Related]
12. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers. Kaur A, Rose DJ, Rumpagaporn P, Patterson JA, Hamaker BR. J Food Sci; 2011 Aug 22; 76(5):H137-42. PubMed ID: 22417432 [Abstract] [Full Text] [Related]
13. Colonic fermentation of dietary fibre to short chain fatty acids in patients with adenomatous polyps and colonic cancer. Clausen MR, Bonnén H, Mortensen PB. Gut; 1991 Aug 22; 32(8):923-8. PubMed ID: 1653178 [Abstract] [Full Text] [Related]
14. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet. Wambacq W, Rybachuk G, Jeusette I, Rochus K, Wuyts B, Fievez V, Nguyen P, Hesta M. BMC Vet Res; 2016 Jun 28; 12(1):130. PubMed ID: 27353524 [Abstract] [Full Text] [Related]
15. Contribution of oligosaccharide and polysaccharide digestion, and excreta losses of lactic acid and short chain fatty acids, to dietary metabolisable energy values in broiler chickens and adult cockerels. Carré B, Gomez J, Chagneau AM. Br Poult Sci; 1995 Sep 28; 36(4):611-29. PubMed ID: 8590094 [Abstract] [Full Text] [Related]
16. Fermentation of dietary fibre by human colonic bacteria: disappearance of, short-chain fatty acid production from, and potential water-holding capacity of, various substrates. Bourquin LD, Titgemeyer EC, Fahey GC, Garleb KA. Scand J Gastroenterol; 1993 Mar 28; 28(3):249-55. PubMed ID: 8383353 [Abstract] [Full Text] [Related]
17. Water-holding by dietary fibre in vitro and its relationship to faecal output in man. Stephen AM, Cummings JH. Gut; 1979 Aug 28; 20(8):722-9. PubMed ID: 488767 [Abstract] [Full Text] [Related]
18. Comparative effects of cellulose and soluble fibers (pectin, konjac glucomannan, inulin) on fecal water toxicity toward Caco-2 cells, fecal bacteria enzymes, bile acid, and short-chain fatty acids. Chen HL, Lin YM, Wang YC. J Agric Food Chem; 2010 Sep 22; 58(18):10277-81. PubMed ID: 20799709 [Abstract] [Full Text] [Related]
19. Effect of human faecal donor on in vitro fermentation variables. McBurney MI, Thompson LU. Scand J Gastroenterol; 1989 Apr 22; 24(3):359-67. PubMed ID: 2544024 [Abstract] [Full Text] [Related]
20. Fermentation in human subjects of nonstarch polysaccharides in mixed diets, but not in a barley fiber concentrate, could be predicted by in vitro fermentation using human fecal inocula. Daniel M, Wisker E, Rave G, Feldheim W. J Nutr; 1997 Oct 22; 127(10):1981-8. PubMed ID: 9311954 [Abstract] [Full Text] [Related] Page: [Next] [New Search]