These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 8390625

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Adrenal phenylethanolamine N-methyltransferase induction in relation to glucocorticoid receptor dynamics: evidence that acute exposure to high cortisol levels is sufficient to induce the enzyme.
    Betito K, Diorio J, Meaney MJ, Boksa P.
    J Neurochem; 1992 May; 58(5):1853-62. PubMed ID: 1560238
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Regulation of opioid peptide synthesis and processing in adrenal chromaffin cells by catecholamines and cyclic adenosine 3':5'-monophosphate.
    Wilson SP, Unsworth CD, Viveros OH.
    J Neurosci; 1984 Dec; 4(12):2993-3001. PubMed ID: 6094747
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Histamine-induced increases in cyclic AMP levels in bovine adrenal medullary cells.
    Marley PD, Thomson KA, Jachno K, Johnston MJ.
    Br J Pharmacol; 1991 Dec; 104(4):839-46. PubMed ID: 1725765
    [Abstract] [Full Text] [Related]

  • 10. Regulation of guanosine triphosphate cyclohydrolase and tetrahydrobiopterin levels and the role of the cofactor in tyrosine hydroxylation in primary cultures of adrenomedullary chromaffin cells.
    Abou-Donia MM, Wilson SP, Zimmerman TP, Nichol CA, Viveros OH.
    J Neurochem; 1986 Apr; 46(4):1190-9. PubMed ID: 2869107
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Cyclic AMP-induced depolarization measured by bis-oxonol fluorescence in bovine adrenal medullary chromaffin cells.
    Minami N, Morita K, Suemitsu T, Miyasako T, Dohi T.
    J Neural Transm Gen Sect; 1994 Apr; 97(1):65-72. PubMed ID: 7888150
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Pituitary adenylate cyclase-activating polypeptide causes Ca2+ release from ryanodine/caffeine stores through a novel pathway independent of both inositol trisphosphates and cyclic AMP in bovine adrenal medullary cells.
    Tanaka K, Shibuya I, Uezono Y, Ueta Y, Toyohira Y, Yanagihara N, Izumi F, Kanno T, Yamashita H.
    J Neurochem; 1998 Apr; 70(4):1652-61. PubMed ID: 9523583
    [Abstract] [Full Text] [Related]

  • 18. Influence of cyclic nucleotides on receptor binding, immunological activity, and microheterogeneity of human choriogonadotropin synthesized in placental tissue culture.
    Hilf G, Merz WE.
    Mol Cell Endocrinol; 1985 Feb; 39(2):151-9. PubMed ID: 2579862
    [Abstract] [Full Text] [Related]

  • 19. Cyclic adenosine monophosphate regulates vasoactive intestinal polypeptide and enkephalin biosynthesis in cultured bovine chromaffin cells.
    Eiden LE, Hotchkiss AJ.
    Neuropeptides; 1983 Dec; 4(1):1-9. PubMed ID: 6199686
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.