These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
266 related items for PubMed ID: 8391127
21. Characterization of ryanodine-sensitive Ca2+ release from microsomal vesicles of rat parotid acinar cells: regulation by cyclic ADP-ribose. Ozawa T, Nishiyama A. J Membr Biol; 1997 Apr 01; 156(3):231-9. PubMed ID: 9096064 [Abstract] [Full Text] [Related]
22. Roles for adenosine ribose hydroxyl groups in cyclic adenosine 5'-diphosphate ribose-mediated Ca2+ release. Ashamu GA, Sethi JK, Galione A, Potter BV. Biochemistry; 1997 Aug 05; 36(31):9509-17. PubMed ID: 9235996 [Abstract] [Full Text] [Related]
23. Magnesium ions but not ATP inhibit cyclic ADP-ribose-induced calcium release. Graeff RM, Podein RJ, Aarhus R, Lee HC. Biochem Biophys Res Commun; 1995 Jan 17; 206(2):786-91. PubMed ID: 7826401 [Abstract] [Full Text] [Related]
24. Sources of calcium in sea urchin eggs during the fertilization response. Shen SS, Buck WR. Dev Biol; 1993 May 17; 157(1):157-69. PubMed ID: 8482408 [Abstract] [Full Text] [Related]
25. Cyclic ADP-ribose and related compounds activate sheep skeletal sarcoplasmic reticulum Ca2+ release channel. Sitsapesan R, Williams AJ. Am J Physiol; 1995 May 17; 268(5 Pt 1):C1235-40. PubMed ID: 7762617 [Abstract] [Full Text] [Related]
26. Ascorbate/iron activates Ca(2+)-release channels of skeletal sarcoplasmic reticulum vesicles reconstituted in lipid bilayers. Stoyanovsky DA, Salama G, Kagan VE. Arch Biochem Biophys; 1994 Jan 17; 308(1):214-21. PubMed ID: 8311455 [Abstract] [Full Text] [Related]
27. Novel mechanisms involved in superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum linked to cyclic ADP-ribose stimulation. Kumasaka S, Shoji H, Okabe E. Antioxid Redox Signal; 1999 Jan 17; 1(1):55-69. PubMed ID: 11225733 [Abstract] [Full Text] [Related]
28. Ca release induced by cyclic adenosine diphosphoribose (cADPr) in sea urchin egg homogenates: mechanisms of release and heterogeneity of the Ca compartments. Becker P, Brose T, Abercrombie R. Cell Calcium; 2005 Mar 17; 37(3):193-201. PubMed ID: 15670866 [Abstract] [Full Text] [Related]
29. Control of calcium in skeletal muscle excitation-contraction coupling: implications for malignant hyperthermia. Wingertzahn MA, Ochs RS. Mol Genet Metab; 1998 Oct 17; 65(2):113-20. PubMed ID: 9787103 [Abstract] [Full Text] [Related]
30. Heterogeneity of the cardiac calcium release channel as assessed by its response to ADP-ribose. Zahradníková A, Bak J, Mészáros LG. Biochem Biophys Res Commun; 1995 May 16; 210(2):457-63. PubMed ID: 7755622 [Abstract] [Full Text] [Related]
31. Regulation of Ca2+ release from internal stores in cardiac and skeletal muscles. Wrzosek A. Acta Biochim Pol; 2000 May 16; 47(3):705-23. PubMed ID: 11310971 [Abstract] [Full Text] [Related]
32. Divergent effects of ruthenium red and ryanodine on Ca2+/calmodulin-dependent phosphorylation of the Ca2+ release channel (ryanodine receptor) in cardiac sarcoplasmic reticulum. Netticadan T, Xu A, Narayanan N. Arch Biochem Biophys; 1996 Sep 15; 333(2):368-76. PubMed ID: 8809075 [Abstract] [Full Text] [Related]
36. Cell signalling. A tale of two messengers. Berridge MJ. Nature; 1993 Sep 30; 365(6445):388-9. PubMed ID: 8413581 [No Abstract] [Full Text] [Related]