These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 8391180
1. Epstein-Barr virus infectivity of Raji and Molt 4 cells: differences in cellular membrane lipids and apparent microviscosity. Patel RA, Hutt-Fletcher LM, Crews FT. Virology; 1993 Jul; 195(1):121-31. PubMed ID: 8391180 [Abstract] [Full Text] [Related]
2. Role of Akata cell membrane fluidity in susceptibility to Epstein-Barr virus infection. Pozzi D, Lisi A, Grimaldi S. Res Virol; 1995 Jul; 146(4):301-5. PubMed ID: 8539494 [Abstract] [Full Text] [Related]
3. Role of membrane fluidity in Epstein Barr virus (EBV) infectivity on Akata cell line. Pozzi D, Lisi A, Lanzilli G, Grimaldi S. Biochim Biophys Acta; 1996 Apr 03; 1280(1):161-8. PubMed ID: 8634311 [Abstract] [Full Text] [Related]
4. Patterned entry and egress by Epstein-Barr virus in polarized CR2-positive epithelial cells. Chodosh J, Gan Yj, Holder VP, Sixbey JW. Virology; 2000 Jan 20; 266(2):387-96. PubMed ID: 10639323 [Abstract] [Full Text] [Related]
5. Productive infection of Epstein-Barr virus (EBV) in EBV-genome-positive epithelial cell lines (GT38 and GT39) derived from gastric tissues. Takasaka N, Tajima M, Okinaga K, Satoh Y, Hoshikawa Y, Katsumoto T, Kurata T, Sairenji T. Virology; 1998 Aug 01; 247(2):152-9. PubMed ID: 9705908 [Abstract] [Full Text] [Related]
6. Differences in the ability of cells to fuse are mediated by strains of Epstein-Barr virus. Takimoto T, Sato H, Ogura H, Tanaka S, Masuda K, Ishikawa S, Umeda R. Laryngoscope; 1989 Oct 01; 99(10 Pt 1):1075-80. PubMed ID: 2552238 [Abstract] [Full Text] [Related]
7. Intracellular localization of the Epstein-Barr virus BFRF1 gene product in lymphoid cell lines and oral hairy leukoplakia lesions. Farina A, Cardinali G, Santarelli R, Gonnella R, Webster-Cyriaque J, Bei R, Muraro R, Frati L, Angeloni A, Torrisi MR, Faggioni A. J Med Virol; 2004 Jan 01; 72(1):102-11. PubMed ID: 14635017 [Abstract] [Full Text] [Related]
8. [Study on the effect of human herpesvirus 6 on replication of Epstein-Barr virus]. Xia Q, Meng G, Ai Y. Zhonghua Er Bi Yan Hou Ke Za Zhi; 1998 Aug 01; 33(4):235-6. PubMed ID: 11717892 [Abstract] [Full Text] [Related]
9. Human herpesvirus-6 infection may predispose cells to superinfection by other viruses. Schonnebeck M, Krueger GR, Braun M, Fischer M, Koch B, Ablashi DV, Balachandran N. In Vivo; 1991 Aug 01; 5(3):255-63. PubMed ID: 1654148 [Abstract] [Full Text] [Related]
10. Identifying gp85-regions involved in Epstein-Barr virus binding to B-lymphocytes. Urquiza M, Suarez J, Lopez R, Vega E, Patino H, Garcia J, Patarroyo MA, Guzman F, Patarroyo ME. Biochem Biophys Res Commun; 2004 Jun 18; 319(1):221-9. PubMed ID: 15158465 [Abstract] [Full Text] [Related]
11. Characterization of natural Epstein-Barr virus infection and replication in smooth muscle cells from a leiomyosarcoma. Jenson HB, Montalvo EA, McClain KL, Ench Y, Heard P, Christy BA, Dewalt-Hagan PJ, Moyer MP. J Med Virol; 1999 Jan 18; 57(1):36-46. PubMed ID: 9890420 [Abstract] [Full Text] [Related]
12. Lipid fluidity of red cell membranes assessed with different fluorescent probes. Donner M, Stoltz JF. Acta Med Port; 1985 Jan 18; 6(9-12):S27-30. PubMed ID: 3832811 [No Abstract] [Full Text] [Related]
13. Binding of the Epstein-Barr virus major envelope glycoprotein gp350 results in the upregulation of the TNF-alpha gene expression in monocytic cells via NF-kappaB involving PKC, PI3-K and tyrosine kinases. D'Addario M, Ahmad A, Morgan A, Menezes J. J Mol Biol; 2000 May 19; 298(5):765-78. PubMed ID: 10801347 [Abstract] [Full Text] [Related]
14. Epstein-Barr virus integrates frequently into chromosome 4q, 2q, 1q and 7q of Burkitt's lymphoma cell line (Raji). Gao J, Luo X, Tang K, Li X, Li G. J Virol Methods; 2006 Sep 19; 136(1-2):193-9. PubMed ID: 16806502 [Abstract] [Full Text] [Related]
15. Increased sensitivity to natural killing in Raji cells is due to effector recognition of molecules appearing on target cell membranes following EBV cycle induction. Blazar BA, Fitzgerald J, Sutton L, Strome M. Clin Exp Immunol; 1983 Oct 19; 54(1):31-8. PubMed ID: 6311470 [Abstract] [Full Text] [Related]
16. Epstein-Barr Virus and its glycoprotein-350 upregulate IL-6 in human B-lymphocytes via CD21, involving activation of NF-kappaB and different signaling pathways. D'Addario M, Libermann TA, Xu J, Ahmad A, Menezes J. J Mol Biol; 2001 May 04; 308(3):501-14. PubMed ID: 11327783 [Abstract] [Full Text] [Related]
17. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases. Niller HH, Wolf H, Minarovits J. Autoimmunity; 2008 May 04; 41(4):298-328. PubMed ID: 18432410 [Abstract] [Full Text] [Related]
18. EBV membrane receptor (CR2) is phosphorylated by protein kinase C (PKC) in the early stages of virus entry into lymphoblastoid cells line (Raji). Aquino A, Lisi A, Pozzi D, Ravagnan G, Grimaldi S. Biochem Biophys Res Commun; 1993 Oct 29; 196(2):794-802. PubMed ID: 7694579 [Abstract] [Full Text] [Related]
19. Early events of fusion between Epstein Barr virus and human lymphoblastoid cells (Raji) detected by R18 fluorescence dequenching measurements. Pozzi D, Zompetta C, Faggioni A, Lisi A, De Ros I, Ravagnan G, Grimaldi S. Membr Biochem; 1990 Oct 29; 9(4):239-51. PubMed ID: 1967072 [Abstract] [Full Text] [Related]
20. A B-lymphocyte binding peptide from BNRF1 induced antibodies inhibiting EBV-invasion of B-lymphocytes. López R, Urquiza M, Patino H, Suárez J, Reyes C, Patarroyo MA, Patarroyo ME. Biochimie; 2005 Nov 29; 87(11):985-92. PubMed ID: 15927339 [Abstract] [Full Text] [Related] Page: [Next] [New Search]