These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 8391868

  • 21. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H, Yoshizawa T.
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [Abstract] [Full Text] [Related]

  • 22. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y, Shichida Y, Kandori H.
    Biochemistry; 2003 Aug 19; 42(32):9619-25. PubMed ID: 12911303
    [Abstract] [Full Text] [Related]

  • 23. Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II.
    Doukas AG, Aton B, Callender RH, Ebrey TG.
    Biochemistry; 1978 Jun 13; 17(12):2430-5. PubMed ID: 678522
    [Abstract] [Full Text] [Related]

  • 24. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated.
    Siebert F, Mäntele W, Gerwert K.
    Eur J Biochem; 1983 Oct 17; 136(1):119-27. PubMed ID: 6311543
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D, Furutani Y, Kandori H.
    Biochemistry; 2007 May 08; 46(18):5365-73. PubMed ID: 17428036
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin.
    Dickopf S, Mielke T, Heyn MP.
    Biochemistry; 1998 Dec 01; 37(48):16888-97. PubMed ID: 9836581
    [Abstract] [Full Text] [Related]

  • 29. Water and peptide backbone structure in the active center of bovine rhodopsin.
    Nagata T, Terakita A, Kandori H, Kojima D, Shichida Y, Maeda A.
    Biochemistry; 1997 May 20; 36(20):6164-70. PubMed ID: 9166788
    [Abstract] [Full Text] [Related]

  • 30. Conformation analysis of glu181 and ser186 in the metarhodopsin I state.
    Ishiguro M.
    Chembiochem; 2004 Sep 06; 5(9):1204-9. PubMed ID: 15368571
    [Abstract] [Full Text] [Related]

  • 31. Localization of the retinal protonated Schiff base counterion in rhodopsin.
    Han M, DeDecker BS, Smith SO.
    Biophys J; 1993 Aug 06; 65(2):899-906. PubMed ID: 8105993
    [Abstract] [Full Text] [Related]

  • 32. Two intermediates appear on the lumirhodopsin time scale after rhodopsin photoexcitation.
    Szundi I, Lewis JW, Kliger DS.
    Biochemistry; 2003 May 06; 42(17):5091-8. PubMed ID: 12718552
    [Abstract] [Full Text] [Related]

  • 33. Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants.
    Lewis JW, Szundi I, Kazmi MA, Sakmar TP, Kliger DS.
    Biochemistry; 2004 Oct 05; 43(39):12614-21. PubMed ID: 15449951
    [Abstract] [Full Text] [Related]

  • 34. Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway.
    Ganter UM, Longstaff C, Pajares MA, Rando RR, Siebert F.
    Biophys J; 1991 Mar 05; 59(3):640-4. PubMed ID: 2049524
    [Abstract] [Full Text] [Related]

  • 35. Effect of carboxylic acid side chains on the absorption maximum of visual pigments.
    Zhukovsky EA, Oprian DD.
    Science; 1989 Nov 17; 246(4932):928-30. PubMed ID: 2573154
    [Abstract] [Full Text] [Related]

  • 36. Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis.
    Janz JM, Farrens DL.
    J Biol Chem; 2004 Dec 31; 279(53):55886-94. PubMed ID: 15475355
    [Abstract] [Full Text] [Related]

  • 37. Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin.
    Creemers AF, Klaassen CH, Bovee-Geurts PH, Kelle R, Kragl U, Raap J, de Grip WJ, Lugtenburg J, de Groot HJ.
    Biochemistry; 1999 Jun 01; 38(22):7195-9. PubMed ID: 10353830
    [Abstract] [Full Text] [Related]

  • 38. Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G protein.
    Longstaff C, Calhoon RD, Rando RR.
    Proc Natl Acad Sci U S A; 1986 Jun 01; 83(12):4209-13. PubMed ID: 3012559
    [Abstract] [Full Text] [Related]

  • 39. Effect of phospholipid and detergent on the Schiff base of cephalopod rhodopsin and metarhodopsin.
    Nashima K, Kawase N, Kito Y.
    Biochim Biophys Acta; 1980 Dec 16; 626(2):390-6. PubMed ID: 7213657
    [Abstract] [Full Text] [Related]

  • 40. Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II.
    Thorgeirsson TE, Lewis JW, Wallace-Williams SE, Kliger DS.
    Photochem Photobiol; 1992 Dec 16; 56(6):1135-44. PubMed ID: 1337214
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.