These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin. Nishimura S, Kandori H, Nakagawa M, Tsuda M, Maeda A. Biochemistry; 1997 Jan 28; 36(4):864-70. PubMed ID: 9020785 [Abstract] [Full Text] [Related]
44. Asp83, Glu113 and Glu134 are not specifically involved in Schiff base protonation or wavelength regulation in bovine rhodopsin. Janssen JJ, De Caluwé GL, De Grip WJ. FEBS Lett; 1990 Jan 15; 260(1):113-8. PubMed ID: 2105232 [Abstract] [Full Text] [Related]
45. FTIR study of the photoreaction of bovine rhodopsin in the presence of hydroxylamine. Katayama K, Furutani Y, Kandori H. J Phys Chem B; 2010 Jul 15; 114(27):9039-46. PubMed ID: 20557105 [Abstract] [Full Text] [Related]
46. Photoreactions of metarhodopsin III. Vogel R, Lüdeke S, Radu I, Siebert F, Sheves M. Biochemistry; 2004 Aug 10; 43(31):10255-64. PubMed ID: 15287753 [Abstract] [Full Text] [Related]
48. Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic. Dioumaev AK, Wang JM, Bálint Z, Váró G, Lanyi JK. Biochemistry; 2003 Jun 03; 42(21):6582-7. PubMed ID: 12767242 [Abstract] [Full Text] [Related]
51. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct. Yan EC, Ganim Z, Kazmi MA, Chang BS, Sakmar TP, Mathies RA. Biochemistry; 2004 Aug 31; 43(34):10867-76. PubMed ID: 15323547 [Abstract] [Full Text] [Related]
52. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Brown LS, Dioumaev AK, Needleman R, Lanyi JK. Biophys J; 1998 Sep 31; 75(3):1455-65. PubMed ID: 9726947 [Abstract] [Full Text] [Related]
53. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy. Ota T, Furutani Y, Terakita A, Shichida Y, Kandori H. Biochemistry; 2006 Mar 07; 45(9):2845-51. PubMed ID: 16503639 [Abstract] [Full Text] [Related]
55. Analysis of the factors that influence the C=N stretching frequency of polyene Schiff bases. Implications for bacteriorhodopsin and rhodopsin. Gilson HS, Honig BH, Croteau A, Zarrilli G, Nakanishi K. Biophys J; 1988 Feb 07; 53(2):261-9. PubMed ID: 3345334 [Abstract] [Full Text] [Related]
56. Ultraviolet resonance Raman evidence for the absence of tyrosinate in octopus rhodopsin and the participation of Trp residues in the transition to acid metarhodopsin. Hashimoto S, Takeuchi H, Nakagawa M, Tsuda M. FEBS Lett; 1996 Dec 02; 398(2-3):239-42. PubMed ID: 8977115 [Abstract] [Full Text] [Related]
58. QM/MM study of dehydro and dihydro β-ionone retinal analogues in squid and bovine rhodopsins: implications for vision in salamander rhodopsin. Sekharan S, Altun A, Morokuma K. J Am Chem Soc; 2010 Nov 17; 132(45):15856-9. PubMed ID: 20964383 [Abstract] [Full Text] [Related]
60. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle. Cao Y, Brown LS, Sasaki J, Maeda A, Needleman R, Lanyi JK. Biophys J; 1995 Apr 17; 68(4):1518-30. PubMed ID: 7787037 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]