These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 8392054

  • 21. Movement of the helical domain of the epsilon subunit is required for the activation of thermophilic F1-ATPase.
    Kato-Yamada Y, Yoshida M, Hisabori T.
    J Biol Chem; 2000 Nov 17; 275(46):35746-50. PubMed ID: 10958801
    [Abstract] [Full Text] [Related]

  • 22. Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences.
    Aggeler R, Haughton MA, Capaldi RA.
    J Biol Chem; 1995 Apr 21; 270(16):9185-91. PubMed ID: 7721834
    [Abstract] [Full Text] [Related]

  • 23. Novel insights into the chemical mechanism of ATP synthase. Evidence that in the transition state the gamma-phosphate of ATP is near the conserved alanine within the P-loop of the beta-subunit.
    Ko YH, Bianchet M, Amzel LM, Pedersen PL.
    J Biol Chem; 1997 Jul 25; 272(30):18875-81. PubMed ID: 9228065
    [Abstract] [Full Text] [Related]

  • 24. The gammaepsilon-c subunit interface in the ATP synthase of Escherichia coli. cross-linking of the epsilon subunit to the c subunit ring does not impair enzyme function, that of gamma to c subunits leads to uncoupling.
    Schulenberg B, Aggeler R, Murray J, Capaldi RA.
    J Biol Chem; 1999 Nov 26; 274(48):34233-7. PubMed ID: 10567396
    [Abstract] [Full Text] [Related]

  • 25. Monoclonal antibody modification of the ATPase activity of Escherichia coli F1 ATPase.
    Aggeler R, Mendel-Hartvig J, Capaldi RA.
    Biochemistry; 1990 Nov 13; 29(45):10387-93. PubMed ID: 2148117
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Adenosine triphosphatase and nucleotide binding activity of isolated beta-subunit preparations from Escherichia coli F1F0-ATP synthase.
    al-Shawi MK, Parsonage D, Senior AE.
    J Biol Chem; 1990 Apr 05; 265(10):5595-601. PubMed ID: 2156822
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. The cysteine introduced into the alpha subunit of the Escherichia coli F1-ATPase by the mutation alpha R376C is near the alpha-beta subunit interface and close to a noncatalytic nucleotide binding site.
    Turina P, Aggeler R, Lee RS, Senior AE, Capaldi RA.
    J Biol Chem; 1993 Apr 05; 268(10):6978-84. PubMed ID: 8463230
    [Abstract] [Full Text] [Related]

  • 30. Catalytic site nucleotide and inorganic phosphate dependence of the conformation of the epsilon subunit in Escherichia coli adenosinetriphosphatase.
    Mendel-Hartvig J, Capaldi RA.
    Biochemistry; 1991 Feb 05; 30(5):1278-84. PubMed ID: 1825019
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Structural and functional features of the Escherichia coli F1-ATPase.
    Gruber G.
    J Bioenerg Biomembr; 2000 Aug 05; 32(4):341-6. PubMed ID: 11768295
    [Abstract] [Full Text] [Related]

  • 35. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP.
    Dou C, Fortes PA, Allison WS.
    Biochemistry; 1998 Nov 24; 37(47):16757-64. PubMed ID: 9843446
    [Abstract] [Full Text] [Related]

  • 36. Cross-linking of engineered subunit delta to (alphabeta)3 in chloroplast F-ATPase.
    Lill H, Hensel F, Junge W, Engelbrecht S.
    J Biol Chem; 1996 Dec 20; 271(51):32737-42. PubMed ID: 8955107
    [Abstract] [Full Text] [Related]

  • 37. F1-ATPase of Escherichia coli: the ε- inhibited state forms after ATP hydrolysis, is distinct from the ADP-inhibited state, and responds dynamically to catalytic site ligands.
    Shah NB, Hutcheon ML, Haarer BK, Duncan TM.
    J Biol Chem; 2013 Mar 29; 288(13):9383-95. PubMed ID: 23400782
    [Abstract] [Full Text] [Related]

  • 38. Rat liver ATP synthase. Relationship of the unique substructure of the F1 moiety to its nucleotide binding properties, enzymatic states, and crystalline form.
    Pedersen PL, Hullihen J, Bianchet M, Amzel LM, Lebowitz MS.
    J Biol Chem; 1995 Jan 27; 270(4):1775-84. PubMed ID: 7829514
    [Abstract] [Full Text] [Related]

  • 39. Directed mutations of the strongly conserved lysine 155 in the catalytic nucleotide-binding domain of beta-subunit of F1-ATPase from Escherichia coli.
    Parsonage D, Al-Shawi MK, Senior AE.
    J Biol Chem; 1988 Apr 05; 263(10):4740-4. PubMed ID: 2895106
    [Abstract] [Full Text] [Related]

  • 40. Probing conformations of the beta subunit of F0F1-ATP synthase in catalysis.
    Masaike T, Suzuki T, Tsunoda SP, Konno H, Yoshida M.
    Biochem Biophys Res Commun; 2006 Apr 14; 342(3):800-7. PubMed ID: 16517239
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.