These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 8393633

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Halothane attenuates nitric oxide relaxation of rat aortas by competition for the nitric oxide receptor site on soluble guanylyl cyclase.
    Jing M, Ling GS, Bina S, Hart JL, Muldoon SM.
    Eur J Pharmacol; 1998 Jan 26; 342(2-3):217-24. PubMed ID: 9548389
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Alpha2-adrenoceptor antagonists evoke endothelium-dependent and -independent relaxations in the isolated rat aorta.
    Kim ND, Kang KW, Kang SY, Vanhoutte PM.
    J Cardiovasc Pharmacol; 1999 Jul 26; 34(1):148-52. PubMed ID: 10413081
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Activation of soluble guanylate cyclase and potassium channels contribute to relaxations to nitric oxide in smooth muscle derived from canine femoral veins.
    Bracamonte MP, Burnett JC, Miller VM.
    J Cardiovasc Pharmacol; 1999 Sep 26; 34(3):407-13. PubMed ID: 10471000
    [Abstract] [Full Text] [Related]

  • 10. Effects of metabolic inhibitors on endothelium-dependent and endothelium-independent vasodilatation of rat and rabbit aorta.
    Weir CJ, Gibson IF, Martin W.
    Br J Pharmacol; 1991 Jan 26; 102(1):162-6. PubMed ID: 1646055
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The effect of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and charybdotoxin (CTX) on relaxations of isolated cerebral arteries to nitric oxide.
    Onoue H, Katusic ZS.
    Brain Res; 1998 Feb 23; 785(1):107-13. PubMed ID: 9526059
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Does halothane interfere with the release, action, or stability of endothelium-derived relaxing factor/nitric oxide?
    Blaise G, To Q, Parent M, Lagarde B, Asenjo F, Sauvé R.
    Anesthesiology; 1994 Feb 23; 80(2):417-26. PubMed ID: 8311324
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Comparison of nicorandil-induced relaxation, elevations of cyclic guanosine monophosphate and stimulation of guanylate cyclase with organic nitrate esters.
    Greenberg SS, Cantor E, Ho E, Walega M.
    J Pharmacol Exp Ther; 1991 Sep 23; 258(3):1061-71. PubMed ID: 1679847
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Evidence that cGMP is the mediator of endothelium-dependent inhibition of contractile responses of rat arteries to alpha-adrenoceptor stimulation.
    MacLeod KM, Ng DD, Harris KH, Diamond J.
    Mol Pharmacol; 1987 Jul 23; 32(1):59-64. PubMed ID: 2885738
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.