These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
441 related items for PubMed ID: 8395585
1. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. Kawaguchi Y, Kubota Y. J Neurophysiol; 1993 Jul; 70(1):387-96. PubMed ID: 8395585 [Abstract] [Full Text] [Related]
2. Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. Kawaguchi Y. J Neurophysiol; 1993 Feb; 69(2):416-31. PubMed ID: 8459275 [Abstract] [Full Text] [Related]
3. Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. Kawaguchi Y. J Neurosci; 1995 Apr; 15(4):2638-55. PubMed ID: 7722619 [Abstract] [Full Text] [Related]
4. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. Kawaguchi Y. J Neurosci; 1993 Nov; 13(11):4908-23. PubMed ID: 7693897 [Abstract] [Full Text] [Related]
5. Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Kawaguchi Y, Kubota Y. Neuroscience; 1998 Aug; 85(3):677-701. PubMed ID: 9639265 [Abstract] [Full Text] [Related]
6. Segregated Excitatory-Inhibitory Recurrent Subnetworks in Layer 5 of the Rat Frontal Cortex. Morishima M, Kobayashi K, Kato S, Kobayashi K, Kawaguchi Y. Cereb Cortex; 2017 Dec 01; 27(12):5846-5857. PubMed ID: 29045559 [Abstract] [Full Text] [Related]
7. Correlation of physiologically and morphologically identified neuronal types in human association cortex in vitro. Foehring RC, Lorenzon NM, Herron P, Wilson CJ. J Neurophysiol; 1991 Dec 01; 66(6):1825-37. PubMed ID: 1812219 [Abstract] [Full Text] [Related]
8. Co-localization of two calcium binding proteins in GABA cells of rat piriform cortex. Kubota Y, Jones EG. Brain Res; 1993 Jan 15; 600(2):339-44. PubMed ID: 8435756 [Abstract] [Full Text] [Related]
9. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Kawaguchi Y, Kubota Y. Cereb Cortex; 1997 Sep 15; 7(6):476-86. PubMed ID: 9276173 [Abstract] [Full Text] [Related]
10. Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics. Gabbott PL, Bacon SJ. J Comp Neurol; 1996 Jan 22; 364(4):567-608. PubMed ID: 8821449 [Abstract] [Full Text] [Related]
11. Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. Kawaguchi Y, Kubota Y. J Neurosci; 1996 Apr 15; 16(8):2701-15. PubMed ID: 8786446 [Abstract] [Full Text] [Related]
12. Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Alcántara S, Ferrer I, Soriano E. Anat Embryol (Berl); 1993 Jul 15; 188(1):63-73. PubMed ID: 8214625 [Abstract] [Full Text] [Related]
13. Control of excitatory hierarchical circuits by parvalbumin-FS basket cells in layer 5 of the frontal cortex: insights for cortical oscillations. Kawaguchi Y, Otsuka T, Morishima M, Ushimaru M, Kubota Y. J Neurophysiol; 2019 Jun 01; 121(6):2222-2236. PubMed ID: 30995139 [Abstract] [Full Text] [Related]
14. Structural alterations in fast-spiking GABAergic interneurons in a model of posttraumatic neocortical epileptogenesis. Gu F, Parada I, Shen F, Li J, Bacci A, Graber K, Taghavi RM, Scalise K, Schwartzkroin P, Wenzel J, Prince DA. Neurobiol Dis; 2017 Dec 01; 108():100-114. PubMed ID: 28823934 [Abstract] [Full Text] [Related]
15. Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro. Chen W, Zhang JJ, Hu GY, Wu CP. Neuroscience; 1996 Jul 01; 73(1):39-55. PubMed ID: 8783228 [Abstract] [Full Text] [Related]
16. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. Kawaguchi Y, Kondo S. J Neurocytol; 2002 Jul 01; 31(3-5):277-87. PubMed ID: 12815247 [Abstract] [Full Text] [Related]
17. Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat. van Brederode JF, Helliesen MK, Hendrickson AE. Neuroscience; 1991 Jul 01; 44(1):157-71. PubMed ID: 1770994 [Abstract] [Full Text] [Related]
18. Postnatal development of parvalbumin and calbindin D-28k immunoreactivities in the canine anterior cingulate cortex: transient expression in layer V pyramidal cells. Moon JS, Kim JJ, Chang IY, Chung YY, Jun JY, You HJ, Yoon SP. Int J Dev Neurosci; 2002 Oct 01; 20(6):511. PubMed ID: 12392755 [Abstract] [Full Text] [Related]
19. A quantitative analysis of parvalbumin neurons in rabbit auditory neocortex. McMullen NT, Smelser CB, de Venecia RK. J Comp Neurol; 1994 Nov 22; 349(4):493-511. PubMed ID: 7860786 [Abstract] [Full Text] [Related]
20. The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex. Williams SM, Goldman-Rakic PS, Leranth C. J Comp Neurol; 1992 Jun 15; 320(3):353-69. PubMed ID: 1613130 [Abstract] [Full Text] [Related] Page: [Next] [New Search]