These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


219 related items for PubMed ID: 8395827

  • 1. Combination of arachidonic acid and guanosine 5'-O-(3-thiotriphosphate) induce translocation of rac p21s to membrane and activation of NADPH oxidase in a cell-free system.
    Sawai T, Asada M, Nunoi H, Matsuda I, Ando S, Sasaki T, Kaibuchi K, Takai Y, Katayama K.
    Biochem Biophys Res Commun; 1993 Aug 31; 195(1):264-9. PubMed ID: 8395827
    [Abstract] [Full Text] [Related]

  • 2. Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase.
    Ando S, Kaibuchi K, Sasaki T, Hiraoka K, Nishiyama T, Mizuno T, Asada M, Nunoi H, Matsuda I, Matsuura Y.
    J Biol Chem; 1992 Dec 25; 267(36):25709-13. PubMed ID: 1464587
    [Abstract] [Full Text] [Related]

  • 3. The respiratory burst oxidase of human neutrophils. Guanine nucleotides and arachidonate regulate the assembly of a multicomponent complex in a semirecombinant cell-free system.
    Uhlinger DJ, Tyagi SR, Inge KL, Lambeth JD.
    J Biol Chem; 1993 Apr 25; 268(12):8624-31. PubMed ID: 8386165
    [Abstract] [Full Text] [Related]

  • 4. Cell-free translocation of recombinant p47-phox, a component of the neutrophil NADPH oxidase: effects of guanosine 5'-O-(3-thiotriphosphate), diacylglycerol, and an anionic amphiphile.
    Tyagi SR, Neckelmann N, Uhlinger DJ, Burnham DN, Lambeth JD.
    Biochemistry; 1992 Mar 17; 31(10):2765-74. PubMed ID: 1312346
    [Abstract] [Full Text] [Related]

  • 5. Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins.
    Kwong CH, Malech HL, Rotrosen D, Leto TL.
    Biochemistry; 1993 Jun 01; 32(21):5711-7. PubMed ID: 8504089
    [Abstract] [Full Text] [Related]

  • 6. p21rac does not participate in the early interaction between p47-phox and cytochrome b558 that leads to phagocyte NADPH oxidase activation in vitro.
    Kleinberg ME, Malech HL, Mital DA, Leto TL.
    Biochemistry; 1994 Mar 08; 33(9):2490-5. PubMed ID: 8117710
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Translocation of guinea pig p40-phox during activation of NADPH oxidase.
    Someya A, Nagaoka I, Nunoi H, Yamashita T.
    Biochim Biophys Acta; 1996 Dec 18; 1277(3):217-25. PubMed ID: 8982388
    [Abstract] [Full Text] [Related]

  • 9. Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components.
    Quinn MT, Evans T, Loetterle LR, Jesaitis AJ, Bokoch GM.
    J Biol Chem; 1993 Oct 05; 268(28):20983-7. PubMed ID: 8407934
    [Abstract] [Full Text] [Related]

  • 10. Activation of the O2(-)-generating NADPH oxidase in a semi-recombinant cell-free system. Assessment of the function of Rac in the activation process.
    Fuchs A, Dagher MC, Jouan A, Vignais PV.
    Eur J Biochem; 1994 Dec 01; 226(2):587-95. PubMed ID: 8001573
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Participation of the small molecular weight GTP-binding protein Rac1 in cell-free activation and assembly of the respiratory burst oxidase. Inhibition by a carboxyl-terminal Rac peptide.
    Kreck ML, Uhlinger DJ, Tyagi SR, Inge KL, Lambeth JD.
    J Biol Chem; 1994 Feb 11; 269(6):4161-8. PubMed ID: 8307977
    [Abstract] [Full Text] [Related]

  • 13. The assembly of neutrophil NADPH oxidase: effects of mastoparan and its synthetic analogues.
    Tisch D, Sharoni Y, Danilenko M, Aviram I.
    Biochem J; 1995 Sep 01; 310 ( Pt 2)(Pt 2):715-9. PubMed ID: 7654216
    [Abstract] [Full Text] [Related]

  • 14. The role of nucleoside-diphosphate kinase reactions in G protein activation of NADPH oxidase by guanine and adenine nucleotides.
    Seifert R, Rosenthal W, Schultz G, Wieland T, Gierschick P, Jakobs KH.
    Eur J Biochem; 1988 Jul 15; 175(1):51-5. PubMed ID: 2841126
    [Abstract] [Full Text] [Related]

  • 15. In vitro activation of the NADPH oxidase by fluoride. Possible involvement of a factor activating GTP hydrolysis on Rac (Rac-GAP).
    Wölfl J, Dagher MC, Fuchs A, Geiszt M, Ligeti E.
    Eur J Biochem; 1996 Jul 15; 239(2):369-75. PubMed ID: 8706742
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Study on the superoxide-producing enzyme of eosinophils and neutrophils--comparison of the NADPH oxidase components.
    Someya A, Nishijima K, Nunoi H, Irie S, Nagaoka I.
    Arch Biochem Biophys; 1997 Sep 15; 345(2):207-13. PubMed ID: 9308891
    [Abstract] [Full Text] [Related]

  • 19. Role of the rac1 p21-GDP-dissociation inhibitor for rho heterodimer in the activation of the superoxide-forming NADPH oxidase of macrophages.
    Pick E, Gorzalczany Y, Engel S.
    Eur J Biochem; 1993 Oct 01; 217(1):441-55. PubMed ID: 8223583
    [Abstract] [Full Text] [Related]

  • 20. On the mechanism of inhibition of the neutrophil respiratory burst oxidase by a peptide from the C-terminus of the large subunit of cytochrome b558.
    Uhlinger DJ, Tyagi SR, Lambeth JD.
    Biochemistry; 1995 Jan 17; 34(2):524-7. PubMed ID: 7819245
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.