These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
237 related items for PubMed ID: 8396657
1. Autoproteolysis of herpes simplex virus type 1 protease releases an active catalytic domain found in intermediate capsid particles. Weinheimer SP, McCann PJ, O'Boyle DR, Stevens JT, Boyd BA, Drier DA, Yamanaka GA, DiIanni CL, Deckman IC, Cordingley MG. J Virol; 1993 Oct; 67(10):5813-22. PubMed ID: 8396657 [Abstract] [Full Text] [Related]
2. Characterization of the protease and other products of amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. Liu F, Roizman B. J Virol; 1993 Mar; 67(3):1300-9. PubMed ID: 8382296 [Abstract] [Full Text] [Related]
3. Herpes simplex virus type 1 protease expressed in Escherichia coli exhibits autoprocessing and specific cleavage of the ICP35 assembly protein. Deckman IC, Hagen M, McCann PJ. J Virol; 1992 Dec; 66(12):7362-7. PubMed ID: 1331526 [Abstract] [Full Text] [Related]
4. Assembly of the herpes simplex virus capsid: requirement for the carboxyl-terminal twenty-five amino acids of the proteins encoded by the UL26 and UL26.5 genes. Thomsen DR, Newcomb WW, Brown JC, Homa FL. J Virol; 1995 Jun; 69(6):3690-703. PubMed ID: 7745718 [Abstract] [Full Text] [Related]
5. Separate functional domains of the herpes simplex virus type 1 protease: evidence for cleavage inside capsids. Robertson BJ, McCann PJ, Matusick-Kumar L, Newcomb WW, Brown JC, Colonno RJ, Gao M. J Virol; 1996 Jul; 70(7):4317-28. PubMed ID: 8676454 [Abstract] [Full Text] [Related]
6. Release of the catalytic domain N(o) from the herpes simplex virus type 1 protease is required for viral growth. Matusick-Kumar L, McCann PJ, Robertson BJ, Newcomb WW, Brown JC, Gao M. J Virol; 1995 Nov; 69(11):7113-21. PubMed ID: 7474131 [Abstract] [Full Text] [Related]
7. Identification of the herpes simplex virus-1 protease cleavage sites by direct sequence analysis of autoproteolytic cleavage products. DiIanni CL, Drier DA, Deckman IC, McCann PJ, Liu F, Roizman B, Colonno RJ, Cordingley MG. J Biol Chem; 1993 Jan 25; 268(3):2048-51. PubMed ID: 8380586 [Abstract] [Full Text] [Related]
8. The promoter, transcriptional unit, and coding sequence of herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame. Liu FY, Roizman B. J Virol; 1991 Jan 25; 65(1):206-12. PubMed ID: 1845885 [Abstract] [Full Text] [Related]
9. Evidence for controlled incorporation of herpes simplex virus type 1 UL26 protease into capsids. Sheaffer AK, Newcomb WW, Brown JC, Gao M, Weller SK, Tenney DJ. J Virol; 2000 Aug 25; 74(15):6838-48. PubMed ID: 10888623 [Abstract] [Full Text] [Related]
10. Stimulation of the herpes simplex virus type I protease by antichaeotrophic salts. Yamanaka G, DiIanni CL, O'Boyle DR, Stevens J, Weinheimer SP, Deckman IC, Matusick-Kumar L, Colonno RJ. J Biol Chem; 1995 Dec 15; 270(50):30168-72. PubMed ID: 8530425 [Abstract] [Full Text] [Related]
11. Assembly of herpes simplex virus capsids using the human cytomegalovirus scaffold protein: critical role of the C terminus. Oien NL, Thomsen DR, Wathen MW, Newcomb WW, Brown JC, Homa FL. J Virol; 1997 Feb 15; 71(2):1281-91. PubMed ID: 8995652 [Abstract] [Full Text] [Related]
12. The 25 amino acid residues at the carboxy terminus of the herpes simplex virus type 1 UL26.5 protein are required for the formation of the capsid shell around the scaffold. Kennard J, Rixon FJ, McDougall IM, Tatman JD, Preston VG. J Gen Virol; 1995 Jul 15; 76 ( Pt 7)():1611-21. PubMed ID: 9049368 [Abstract] [Full Text] [Related]
13. The bovine herpesvirus 1 maturational proteinase and scaffold proteins can substitute for the homologous herpes simplex virus type 1 proteins in the formation of hybrid type B capsids. Haanes EJ, Thomsen DR, Martin S, Homa FL, Lowery DE. J Virol; 1995 Nov 15; 69(11):7375-9. PubMed ID: 7474173 [Abstract] [Full Text] [Related]
14. Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection. Hippenmeyer PJ, Rankin AM, Luckow VA, Neises GR. J Virol; 1997 Feb 15; 71(2):988-95. PubMed ID: 8995617 [Abstract] [Full Text] [Related]
15. The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. Liu FY, Roizman B. J Virol; 1991 Oct 15; 65(10):5149-56. PubMed ID: 1654435 [Abstract] [Full Text] [Related]
16. Purification and characterization of the mouse mammary tumor virus protease expressed in Escherichia coli. Menéndez-Arias L, Young M, Oroszlan S. J Biol Chem; 1992 Nov 25; 267(33):24134-9. PubMed ID: 1331110 [Abstract] [Full Text] [Related]
17. Regions of the herpes simplex virus scaffolding protein that are important for intermolecular self-interaction. Preston VG, McDougall IM. J Virol; 2002 Jan 25; 76(2):673-87. PubMed ID: 11752158 [Abstract] [Full Text] [Related]
18. Expression of natural and synthetic genes encoding herpes simplex virus 1 protease in Escherichia coli and purification of the protein. Apeler H, Gottschalk U, Guntermann D, Hansen J, Mässen J, Schmidt E, Schneider KH, Schneidereit M, Rübsamen-Waigmann H. Eur J Biochem; 1997 Aug 01; 247(3):890-5. PubMed ID: 9288912 [Abstract] [Full Text] [Related]
19. Second-site mutations encoding residues 34 and 78 of the major capsid protein (VP5) of herpes simplex virus type 1 are important for overcoming a blocked maturation cleavage site of the capsid scaffold proteins. Warner SC, Desai P, Person S. Virology; 2000 Dec 05; 278(1):217-26. PubMed ID: 11112496 [Abstract] [Full Text] [Related]
20. Recombinant full-length human cytomegalovirus protease has lower activity than recombinant processed protease domain in purified enzyme and cell-based assays. Wittwer AJ, Funckes-Shippy CL, Hippenmeyer PJ. Antiviral Res; 2002 Aug 05; 55(2):291-306. PubMed ID: 12103430 [Abstract] [Full Text] [Related] Page: [Next] [New Search]