These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
376 related items for PubMed ID: 8397409
1. Nucleation of hydroxyapatite by bone sialoprotein. Hunter GK, Goldberg HA. Proc Natl Acad Sci U S A; 1993 Sep 15; 90(18):8562-5. PubMed ID: 8397409 [Abstract] [Full Text] [Related]
2. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Hunter GK, Goldberg HA. Biochem J; 1994 Aug 15; 302 ( Pt 1)(Pt 1):175-9. PubMed ID: 7915111 [Abstract] [Full Text] [Related]
8. Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. Kasugai S, Nagata T, Sodek J. J Cell Physiol; 1992 Sep 01; 152(3):467-77. PubMed ID: 1510790 [Abstract] [Full Text] [Related]
9. A repeated triple lysine motif anchors complexes containing bone sialoprotein and the type XI collagen A1 chain involved in bone mineralization. Gorski JP, Franz NT, Pernoud D, Keightley A, Eyre DR, Oxford JT. J Biol Chem; 2021 Sep 01; 296():100436. PubMed ID: 33610546 [Abstract] [Full Text] [Related]
10. Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Goldberg HA, Warner KJ, Li MC, Hunter GK. Connect Tissue Res; 2001 Sep 01; 42(1):25-37. PubMed ID: 11696986 [Abstract] [Full Text] [Related]
11. Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW. Bone Miner; 1993 Aug 01; 22(2):147-59. PubMed ID: 8251766 [Abstract] [Full Text] [Related]
12. Dentin sialoprotein (DSP) has limited effects on in vitro apatite formation and growth. Boskey A, Spevak L, Tan M, Doty SB, Butler WT. Calcif Tissue Int; 2000 Dec 01; 67(6):472-8. PubMed ID: 11289697 [Abstract] [Full Text] [Related]
13. Characterization of fetal porcine bone sialoproteins, secreted phosphoprotein I (SPPI, osteopontin), bone sialoprotein, and a 23-kDa glycoprotein. Demonstration that the 23-kDa glycoprotein is derived from the carboxyl terminus of SPPI. Zhang Q, Domenicucci C, Goldberg HA, Wrana JL, Sodek J. J Biol Chem; 1990 May 05; 265(13):7583-9. PubMed ID: 2332443 [Abstract] [Full Text] [Related]
15. Bone sialoprotein in developing porcine dental tissues: cellular expression and comparison of tissue localization with osteopontin and osteonectin. Chen J, McCulloch CA, Sodek J. Arch Oral Biol; 1993 Mar 05; 38(3):241-9. PubMed ID: 8489418 [Abstract] [Full Text] [Related]
17. Characterization of native and recombinant bone sialoprotein: delineation of the mineral-binding and cell adhesion domains and structural analysis of the RGD domain. Stubbs JT, Mintz KP, Eanes ED, Torchia DA, Fisher LW. J Bone Miner Res; 1997 Aug 05; 12(8):1210-22. PubMed ID: 9258751 [Abstract] [Full Text] [Related]
19. Isolation of new phosphorylated glycoprotein from mineralized phase of bone that exhibits limited homology to adhesive protein osteopontin. Gorski JP, Shimizu K. J Biol Chem; 1988 Nov 05; 263(31):15938-45. PubMed ID: 2846530 [Abstract] [Full Text] [Related]
20. Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Hunter GK, Kyle CL, Goldberg HA. Biochem J; 1994 Jun 15; 300 ( Pt 3)(Pt 3):723-8. PubMed ID: 8010953 [Abstract] [Full Text] [Related] Page: [Next] [New Search]